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ABSTRACT

Sparse image reconstruction is of interest in the fields of radioas-
tronomy and molecular imaging. The observation is assumed to be a
linear transformation of the image, and corrupted by additive white
Gaussian noise. We study the usage of sparse priors in the empirical
Bayes framework: it permits the selection of the hyperparameters of
the prior in a data-driven fashion. Three sparse image reconstruction
methods are proposed. A simulation study was performed using a
binary-valued image and a Gaussian point spread function. In the
range of signal to noise ratios considered, the proposed methods had
better performance than sparse Bayesian learning (SBL).

Index Terms- sparse image reconstruction, empirical Bayes,
Stein's unbiased risk estimator, sparse Bayesian learning, LASSO
estimator

1. INTRODUCTION

In most image reconstruction problems, the images are not directly
observable. Instead, one observes a transformed version of the im-
age, possibly corrupted by noise. In the general case, the estimation
of the image can be regarded as a simultaneous deconvolution and
denoising problem. Intuitively, a better reconstruction can be ob-
tained by incorporating knowledge of the image into the reconstruc-
tion algorithm.

In this paper, the images of interest to be reconstructed are as-
sumed to be sparse. Sparse images appear naturally, for example, in
radioastronomy and molecular imaging. As well, a non-sparse im-
age might have a sparse representation in some appropriate domain.
For example, an image composed of several constant-valued areas
will, upon spatial differentiation, become sparse. We consider the
model where the observation is a linear transformation of the image,
and corrupted by additive white Gaussian noise (AWGN).

There are several existing methods that address the sparse im-
age reconstruction problem. The first is sparse Bayesian learning
(SBL) [1]. The second existing method is the estimator formed by
maximizing the penalized likelihood criterion with a 11 norm penalty
on the image values. The aforementioned error criterion is known to
promote sparsity in the estimate [2]. This estimator shall be called
the LI estimator; it is also known as the LASSO estimator [3]. The
LI estimator can be regarded as the maximum a posterior (MAP)
solution when an i.i.d. Laplacian prior is used.

We seek to use sparse priors in the empirical Bayes framework
to derive sparse image reconstruction methods. This framework per-
mits the selection of the hyperparameters of the prior in a data-driven
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fashion. It therefore has the element of adaptability: this is criti-
cal, as different images will have different sparsity levels and their
non-zero values will have different histograms. Three reconstruc-
tion methods are proposed. Firstly, we propose using Stein's unbi-
ased risk estimator (SURE) [4] to select the hyperparameter for the
LI estimator. The other two methods rely on the sparse prior used
in the empirical Bayes denoising (EBD) method of [5], which is a
weighted average of a Laplacian p.d.f. and an atom at zero (LAZE).
Marginal maximum likelihood (MML) and maximum a posteriori
(MAP) were used to learn the hyperparameter for these two other
methods. A simulation study was conducted comparing the three
proposed methods to SBL. For the range of signal to noise ratios
(SNR) considered, the proposed methods have better performance
than SBL.

2. PROBLEM FORMULATION

Denote the observation by y, which typically corresponds to a 2-
dimensional or 3-dimensional array. By enumerating the elements of
the array lexicographically, one can equivalently represent the image
by a vector. Without loss of generality, take y C RRN. Let 0 be the
parameters of interest (e.g., the original image) that one would like
to estimate from y. Again, without loss of generality, let 0 C IRm.

Consider the conditional p.d.f. of y given 0, i.e., p(y 0). Suppose
that we would like to estimate 0 under the condition that it is sparse,
i.e., most of the values of 0i are zero. In this paper, a linear model
for y given by

y =H0+w, wJ-/(w;0, I), (1)

is considered, where: AJ(Q; ,u, E) is the Gaussian density with mean
,u and covariance matrix E; and H C RN 'M. The problem we con-
sider is as follows. Suppose that y, H, u are known and model (1) is
given. Knowing that 0 is sparse, how can 0 be optimally estimated?

IfH had full column rank, (HTH) would be invertible, and (1)
could be written as

y =0+w', w' J\-(,2Ht(Ht)T) (2)

where y'-AHty, Ht A (HTH)-HT is the pseudoinverse of H,
and w' A Htn is coloured Gaussian noise. In this case, (1) would be
equivalent to denoising a sparse 0 in coloured Gaussian noise. When
H is an orthonormal matrix, the elements of w' would be i.i.d. Gaus-
sian. The problem is then reduced to a sparse denoising problem. In
this case, by re-labelling y' and w' as y and w respectively, we can
suppose without loss of generality that H = I.
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3. DENOISING AND DECONVOLUTION

Two special cases of (1) have been studied in the past. Firstly, ifH
I, the estimation of 0 in (1) would be a sparse denoising problem in
AWGN [5]. Secondly, if u= 0, the problem reduces to the task of
finding a sparse basis representation of y in terms of the columns of
H [1, 2]. In the general case when H 7 I and u :7 0, the estimation
of 0 can be regarded as a simultaneous deconvolution and denoising
problem.

The deconvolution and denoising subproblems can be separated
in the context of finding the maximum a posteriori (MAP)/maximum
penalized likelihood (MPL) estimate of 0, which is

0 = argmaxo(logp(y 0) -pen(0)), (3)

where pen(O) is a suitable penalty function imposed on 0. Intro-
duce an intermediate r.v. z so that p(y Iz, 0) = p(yIz) and apply the
Expectation-Maximization (EM) algorithm. In EM parlance, z is
called the complete data. The authors in [6] selected z== 0 + ow 1a
where w1 has the p.d.f. AJ (w1; 0, I). The quantity a C R+ must sat-
isfy a2 < 2 /p(HHT), where p(.) is the spectral radius function.
Then, y Hz+ w2, where w 2A_(w2; a2HHT).

The following notation shall be used for the iterative estimates
of 0: 0(n) shall denote the estimate at the nth step, for n > 0. The
initial condition is b(O) = 0(O). The resulting EM iterations are

Z(n) = b(n) + (ao/1)2HT(y HO (n)) (4)

0(n+l) argmax_ [ 2 0 (n) 112 pen(0)] (5)

The norm 11 without a subscript denotes the 12 norm. Equation (4)
can be regarded as a deconvolution step (indeed, it is a Landweber
iteration) and (5) as a denoising step. The iterations can be more
succinctly written as

0(n+) = D (n(f) + (a/o)2(y H0( ))) ' (6)

where 'D(.) is a denoising operation that depends on the form of
pen(.).

4. SPARSE PRIORS FOR 0

Several priors have been used to model a sparse 0. It is known that
the 11 norm penalty in the MPL framework induces sparsity in 0 [2].
This corresponds to the Ois being i.i.d. Laplacian r.v.s

ii Pi(0Q;a), pi(x;a) ae- (7)2

Even through the Laplacian density is a sparsifying prior, it does
not explicitly model the assumption that the preponderance of Ois
are zero. In [5], this natural extension was applied. The following
sparse prior for 0 was considered

0i ii (1 -w)>(01) + wpi(01; a), (8)

where d(-) is the Dirac delta function. Recall that density (8) is
called the LAZE prior. In SBL, the 0is were taken to be independent
but not identically distributed Gaussian r.v.s [1].

oi -A(Oi;0, yi) (9)

One would not normally think of the Gaussian density as a sparsify-
ing prior. However, when +yi 0, the ith element of the posterior
mean E[OIy,-y] is 0, where A (1i,...,1v1)T.

5. ESTIMATION OF THE HYPERPARAMETER AND
ORIGINAL IMAGE

The tuning parameters in the prior density, e.g., a, w in (8), are not
known a priori. Indeed, the prior densities mentioned above might
not be the true density for 0; that is, a mismatch for p(0) is possible.
The tuning parameters are important, as they should be selected so
that the assumed density on 0 matches the true density as closely as
possible. The tuning parameters of the prior on 0 shall be called the
hyperparameters. Let X be the vector of hyperparameters.

We adopt a data-driven, empirical, approach to estimating the
hyperparameter. This paper will discuss three ways.

MML One computes p(yl ) = f p(y, 01q)dO, and X
argmax,Xp(y|0). In both EBD and SBL, MML is used to

compute b. Conveniently, the marginal likelihood can be
computed in closed form for the prior (8) when H = I and
for (9) with arbitrary H.

MAP The variables 0 and X can be jointly estimated in the MAP
framework as as 0, X argmaxo0, logp(0 y,Ib).

SURE Define the risk as R Ey HO HO2]. In order to com-
pute the risk, 0 is required. Stein's unbiased risk estimate R
is an unbiased estimate of R [4]. Select X that minimizes R,
subject to perhaps a non-negativity criteria for each Xi. A
more ideal risk would be Ey [ 0 0 2]; however, one would
not be able to compute SURE for this risk function for a gen-
eral H.

Once X is learned, an estimate of 0 can be formed, if it has not
been jointly estimated with b. In the EBD denoising method of [5],
the posterior median is used to compute an estimate of 0. As the
prior on 0 and the noise w are i.i.d., denoising of the M elements of
0 can be done on an element-by-element basis. When p(O) has the
form (8) and H = I, the posterior median is a thresholding rule [5].
Let Ti (.; b, v): R -* R denote the posterior median (thresholding
rule) induced by (8) when H = I. A thresholding rule T(.; b, v)
is said to have threshold t if T(X; z, 7) = 0 iff IXI < t. In the
non-trivial case, the posterior median will have threshold t > 0.
The sparsifying effect is clear: any values of the observation with
magnitude less than t will be set to zero. In SBL, the posterior mean
is used. Unlike EBD, SBL can be used when H :7 I: it is a method
that performs simultaneous deconvolution and denoising. Lastly, the
MAP/MPL framework of (3) can be employed as well to form 0.

6. PROPOSED RECONSTRUCTION METHODS

Three methods for sparse image reconstruction are proposed. The
first will use the EBD denoising method of [5] as D(.) in (6). This
will be referred to as EBD-LAZE. Note that EBD-LAZE is not an
EM implementation. Instead, it is an ad-hoc formulation that uses
EBD as a sparse denoising operator. The iteration for EBD-LAZE at
the nth step is:

1. Compute z~() according to (4).

2. Find /(n) argmax,g,p(z(n) I), using (8) forp(0I).
3. Set 0( 1(() ,o) for i = 1, ...., M.
The second method will use the discrete-continuous version of

the LAZE sparse prior, as the delta function is hard to work with in
the MAP setting. Define the random variables 0i and 1i such that
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Oi = hi0i, 1 < i < M. 1i is taken to be a Bernoulli r.v. with param-
eter p = w, i.e., 1i = 1 with probability w and 0 with probability
1 -w. The r.v. 0i has the conditional p.d.f.

p(iI{i)= {Ii (10)~(0~I~) Pi 0i; a) 1i 1

and (0i, Ii) are assumed to be i.i.d. for 1 < i < M. The density g )
is an arbitrary density independent of a. The estimation of X and 0
occurs jointly in the MAP framework. This method will be called
MAP-LAZE. The optimality criterion is

i,I, X argmax logp(0, Iy, ). (i1)
O,I ,0

The optimization of (11) is done using block coordinate-wise
maximization. The maximizing (0, I, b) is obtained by alternately
(i) maximizing X while holding (0, I) fixed, and (ii) maximizing
(0, I) while holding X fixed. The maximization in step (i) is solvable
in closed form as

a= 1101lo/11O11, andw = 1101lo/M (12)

where llxllo #{i :xi= 0} is the lo measure. The lo measure is
not a norm; rather, it is a counting measure. Next, the maximization
in step (ii) can be obtained by applying the EM algorithm with the
complete data z 0 + a w . The resulting iterations are

1. Compute z( according to (4).
(n+1) Zn)2. Set 0( = T2 azn;,o), for i = 1,.., M.

The thresholding rule T2 is defined as follows. Let g* supx g(x)
and g*Clr . The thresholding rule T2(.; a,) RR -) R is
given by

Li-SURE, and MAP-LAZE. EBD-LAZE requires a 2-dimensional
search for X in each iteration. This can be decreased by performing
the search every nth iteration, if the hyperparameter estimates are
not changing that rapidly. In Li-SURE, a search in X for X > 0 is
performed to minimize the SURE criterion. Least angle regression
(LARS) can be used to efficiently compute the Li estimator [9]. The
columns of H must be linearly independent in order to apply LARS;
however, that is already assumed by the application of (15). Finally,
with MAP-LAZE, the iterations are given above in closed form, and
no search is needed. The proposed methods have less computational
complexity than SBL [7].

7. SIMULATION STUDY

The following four methods are compared in this section: EBD-
LAZE, MAP-LAZE, Li-SURE, and SBL. The parameter 0 was set
to a 32 x 32 binary image, i.e., the pixel values were either 0 or
1. Due to a lack of space, we will not consider other possible 0,
e.g., non-binary images. H was taken to be a square matrix, i.e.,
M = N = 322. In particular, H implemented convolution with
a Gaussian point spread function (psf). The columns of H are lin-
early independent, so the SURE expression (15) can be used, and the
Li-SURE estimator can be implemented using LARS.

The four reconstruction methods were tested under four different
SNR values, where the SNR is defined as SNRA(M - 1lH 2) 2
The four SNR values examined were: 1.5, 2, 2.5, and 3. A wider
range of SNRs are examined in [7]. A sparsity level of 12 non-zero
values in 0 was considered. This corresponded to approximately
1.2% of the pixel values of 0 being non-zero. The image 0 is de-
picted in Fig. l(a), and a realization of y under SNR = 3 is depicted
in Fig. l(b). The MAP-LAZE reconstruction method was used with

sgn(x)acr)I(xl > tl') r > 1
sgn(x)ar2)I( lx > t ) 0 < r < 1

(13)
where tT = au2 + 2u2 ogrand t= aU2. ForO < r < 1, T2
is the soft-thresholding function. Other optimization techniques can

be used to maximize the criterion in (11). Note that g* is a tuning
parameter that must be manually set.

The third method is the MAP estimate with the Laplacian prior,
but with X selected by minimizing the SURE criterion. The MAP es-

timate can be regarded as the MPL estimate with the 11 norm penalty
on 0, i.e., (3) with pen(0) = ' 0 1 , /' > 0. Equivalently, by let-
ting 0 = 2U2/', the MPL estimate is given by

0 =argmino(Ily-HOI| +/ 0111). (14)

If the columns of H are linearly independent, SURE for the 11 regu-
larization criterion is equal to

R(3) = Nu + Ily -HO(Q)2 + 2cru0(4) (15)

where the dependence of 0 on 0 is explicitly noted [7]. The estimator
corresponding to the non-negative 0 that minimizes R(/3) in (15)
will be called the Li-SURE estimator. A SURE expression similar
to (15) was derived in the case of a diagonal H and where the 11
penalty was imposed on the coefficients of a 2-d wavelet transform
of 0 [8, (10)-(i 1)].

Of the three methods proposed in this section, the computational
complexity can be ordered from highest to lowest as: EBD-LAZE,

(a) Image 0 (b) Noisy observation y

Fig. 1. Image 0 and a realization of y under SNR = 3.

g* (2)-1. Each reconstruction method was repeated with 30
realizations of the noise w (except for MAP-LAZE under SNR =

1.5, where 100 realizations were used).
Define the reconstruction error e A 0 -0. The performance

of the reconstruction methods is evaluated by considering (i) e| 2;

(ii) Ed(0,0;6) A Ei 1I(10ij < 6) -I(0j = 0)|; and (iii) 0l lo.
Criterion (ii) is a detection error criterion. It measures the ability of
the estimator to distinguish between the zero and non-zero values of
0. The value of 6 used was 10 -2 10 = 10 -2 For criteria (i) and

(ii), smaller values are preferable. On the other hand, for criterion
(iii), a value closer to 0 o = 12 is preferable.

The plot of the 12 reconstruction error is given in Fig. 2(a), the
detection error criterion in Fig. 2(b), and the number of non-zero

values of 0 in Fig. 2(c). The mean of each criterion and error bars
of one standard deviation are plotted. The performance of the meth-
ods in terms of IIe 12 can be ordered from best to worst as: MAP-
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MAP-LAZE MAP-LAZE
- --EBD-LAZE 0 - -EBD-LAZE

LI-SURE SBLURESB ..+ SB

SNR

(b) Ed (Q, b; 10-2)
o S !- MAP-LAZE

lo'03 .......... """" -"" ..... ' -- -EBD-LAZE

:1-

10'c1.5 2 2.5 3
SNR

(c) iibiio

(a) SBL (b) EBD-LAZE

(c) MAP-LAZE (d) LI-SURE

Fig. 3. Reconstructed images for a realization of y under SNR = 3.

Fig. 2. Performance of the reconstruction methods.

LAZE, LI-SURE, EBD-LAZE, and SBL. In terms of the detection
error criterion, EBD-LAZE has better performance than LI-SURE,
giving rise to the ordering from best to worst as: MAP-LAZE, EBD-
LAZE, L1-SURE, and SBL. The estimates 0 that SBL produced in
the simulations were not strictly sparse. Under the SNR values con-

sidered, SBL produced estimates 0 such that 0 o = 1024, i.e., none
of the 0is were zero. In contrast, the other three methods produced
estimates that were sparser by at least an order of magnitude.

Reconstructed images for one realization of the noise w under
SNR = 3 are given in Figs. 3(a)-(d). MAP-LAZE has the best
reconstruction. While there is blurring around some of the non-zero

pixels, there is less as compared to the other methods. EBD-LAZE's
contains noticeably more blurring, while the LI-SURE estimator

more closely resembles MAP-LAZE's 0. We notice that the SBL
reconstructed image contains negative-valued pixels. While none of
the reconstruction methods enforce positivity, there are no negative
values in Figs. 3(b)-(d). SBL's 0 contains spurious non-zero pixels
far away from the non-zero pixel locations of 0. It was previously
noted that SBL never produced a strictly sparse image. Indeed, the
0 in Fig. 3a looks sparser than would be suggested by 0 o = 1024.
The reason is that many of non-zero 0is have small magnitudes that
make them visually indistinguishable from zero.

8. CONCLUSION

Three priors were examined for the purposes of forming an empirical
Bayes estimator of sparse images. It was assumed that the parameter
vector 0 was distributed according to one of the following p.d.f.s:
i.i.d. Laplacian, i.i.d. LAZE, independent but not identical Gaussian.
The choice of prior is but one aspect that contributes to final form of
the sparse image reconstruction method. The two other aspects that
play an important role are: method of learning the hyperparameter
and method of forming the estimator 0. Several possibilities were

mentioned for each. Three sparse image reconstruction methods
were proposed based on the i.i.d. Laplacian and i.i.d. LAZE priors.
In a simulation study, these were compared to SBL, which is based

on the Gaussian prior. In the range of SNR = 1.5 to 3, the proposed
methods demonstrated benefits over SBL. The MAP-LAZE estima-
tor in particular had the best performance in terms of the three error

criteria considered. MAP-LAZE is also the least computationally
complex of the four methods; it is therefore an attractive candidate
for future study. It was noted that SBL produced estimates that were
not strictly sparse.
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