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REGION-BASED ACTIVE CONTOUR WITH NOISE AND SHAPE PRIORS
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ABSTRACT number of randomly located scatters), the Rayleigh distrib

In this paper, we propose to combine formally noise and shap®n is well suited to model the noise![8]. .

priors in region-based active contours. On the one hand, we _The main contribution of this paperis to combine formally

use the general framework of exponential family as a prioP'CiS€ and shape priors in region-based active contoursgpr s

model for noise. On the other hand, translation and scale jf€ntation purposes. In order to fix ideas, let us consider a

variant Legendre moments are considered to incorporate t§g9ion of interest) in the image. We propose to find the

shape prior (e.g. fidelity to a reference shape). The combRartition of the image that minimizes the following generic

nation of the two prior terms in the active contour functiona Criterion which is able to handle both noise and shape priors

yields the final evolution equation whose evolution speed is

rigorously derived using shape derivative tools. Experitak J(Q) = /Q fa(x, Q)dx + a d(Q, Qrey)

results on both synthetic images and real life cardiac echog

raphy data clearly demonstrate the robustness to iniiadim ~ where(,..; represents the reference region shape,sard

and noise, flexibility and large potential applicability fir [z, y]” stands for the location of the pixel.

segmentation algorithm. The first term corresponds to the noise prior term. This

term takes benefit of statistical properties of the imagenint

sity. It is based on functions of parametric probability sign

1. INTRODUCTION functions (pdf) belonging to the exponential family. Preba
bility models with these common features include Normal,

The current work is devoted to the segmentation of region§ernoulli, Binomial, Poisson, Gamma, Beta, Rayleigh, etc.

of a priori known shape in noisy images using region-basedhese models are the most commonly encountered in imag-

active contours[1,123]. This method allows the use of phoiNg acquisition systems. This term is detailed in Secfibn 3.

tometric image properties, such as texture and noise, ds wélhe second term($2, ,..y) corresponds to the shape prior.

as geometric properties such as the shape of the object to phapes are here described using scale and translatio invar

segmented. The shape prior can prove very useful in cas@t Legendre moments as if [9]. With such a shape descrip-

where the object is occluded or partially missing. Furtherior, the registration step is avoided. This term is disctigse

more, by including an a priori on the shape, sensitivity @f th SectiorL4.

active contour model to initialization will also be alleteal. The evolution equation of the deformable curve is de-
On the one hand, attempts to incorporate shape priO,@uced from the functional to minimize using shape deriwativ

have been proposed by some authors using various method@ls [10] and the framework set in [11.12].

such as diffusion snakes|[1] or distance function[[2,13, 4].  This paper is organized as follows: we briefly remind the

On the other hand, there are 0n|y few proposa|s in the |it5hape derivation tools in SeCtIEh 2. The noise model term is

erature that tried to take benefit of a noise pridr[[5[ 6, 7jpresented in Sectidd 3. In Sectioh 4, we introduce the shape

within region-based active contours. In these works, imag@rior model and the invariances that were added. The seg-

features (e.g. intensity) are considered as random vasablmentation algorithm is presented in Secfion 5. Experinienta

whose distribution belongs to some parametric family whictfesults are discussed in Sectldn 6. We finally conclude and

is chosen according to the physical acquisition model of th@IVe Some perspectives.

considered images. However, to the best of our knowledge,

shape and noise priors have never been combined, at least 2. SHAPE DERIVATIVE TOOLS

formally, in active contour models. This would enable to-per

form the segmentation of poor noisy images, beyond the simn order to be comprehensive, we here give a brief summary

ple classical white Gaussian noise model, with a strongeshapof the shape derivation theory. The interested reader nfey re

constraint. Example of such data is encountered in echocate [10,[11/12] for further details.

diographic images. For instance, in echographic data, it is Leti{ be a class of domains (open, regular bounded sets,

notably well known that under appropriate conditions (¢arg i.e. C?) of R”, and2 an element of{. The boundary(? of

Index Terms— Image segmentation
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Q is sometimes denoted QY random variable¥ belonging to theé:-parametecanonical
The region-based term is expressed as a domain integrexponential family is:

of a functionf named descriptor of the region : p(y,m) = h(y)exp|[(n, T(y)) — A(n)] (5)
J-(Q)= [ f(x,Q)dx (1)  where(n, T) denotes the scalar product.
Q This statistical criterion is now derived according to the

In the general case, this descriptor may depend on the dgomain in order to deduce the evolution equation of the ac-
main such as the descriptors introduced thereafter forenoidive contour. For the sake of simplicity, we denatdor the

and shape priors. The derivation of this term is performed ughatural parameter of a pdf of the exponential family and its fi
ing domain derivation tools. We apply a fundamental theorenfiite sample estimate over the domain (without a slight abuse
[10] which establishes a relation between the Euleriarvderi ©Of notation, this should bg).

tive of J,.(2) in the directionV, and the domain derivative of

f denotedf, (x, Q, V): Theorem 1 The Gateaux derivative, in the direction &7,
of the functional/,, (Q) = [, ®(p(y(x),n(2)))da(x) where
< J(Q),V> = fs(x, 0, V)dx p(.) belongs to the multi-parameter exponential family with
Q natural hyperparameter vectay, is:
" SO DNV N @ ). v s = [ apy)(V - N)dalx)
whereN is the unit inward normal tof2, da its area element. / _
The first integral comes from the dependence of the descripto +/Qp(y)q) (Py)){Vvn, T(y) = VAm))dx ©)

tj;(;{’eg\}())lztﬁ)g: é?(tahree?égir:)xvnlslglfthe second term comes fromwith Vvn the Gateaux derivative ofy in the direction ofV,

From the shape derivative, we can deduce the evolutio"rjlmoux’y> the scalar product of vectors andy.

equation that will drive the active contour towards a minimu In a finite sample setting, when using the ML estimator,
of the criterion. o ~ we can replac&/ A(n) by T(Y) (the 1st order sample mo-
Let us suppose that the shape derivative of the refion ment of T(Y)). Thus, when using the -log-likelihood func-
may be written as follows: tion, the second term becomes equalftgVvn, T(y) —
< JHQ),V >= _/ v(x, Q)(V(x) - N(x))da(x) (3) T(Y.)))dx, and hence vanishes. The following corollary fol-
20 lows:
We can then deduce the following evolution equation: Corollary 1 The Gateaux derivative, in the direction &f,
r i = -
dl'(p, 1) V(% Q) N(x) of theAfuncltlonaUn(Q) : fQ llog(p(y(x), UMI..‘ (Q))da(x)
or whening, is the ML estimate, is the following:
with I(7 = 0) = Fo, x = T(p,7). < JL(Q),V >= / (10g (P(y (%), Ty, (2)(V - N)da(x)
o0
3. THE NOISE MODEL These general results can be easily specialized to some

pdf of interest (e.g. Gaussian, Rayleigh, etc). We let the
In this section we focus our attention on the noise model. Theeader refer ta [6] for more details.
chosen descriptor for this part is:

Fa(x,9Q) = B(p(y(x),m) (4) 4. THE SHAPE PRIOR MODEL

wherep is the pdf of some image featurgéx) € R? whose The shape prior is used as an additional fidelity term (e.g.
associated parameters are denotedognd® is at leastC'.  to a reference shape), designed to make the behaviour of the
In our study, we consider thatbelongs to the exponen- segmentation algorithm more robust to occlusion and nissin
tial family. This family is comprehensive enough to coverdata and to alleviate initialization issues. Here, orthwjo
noise models in most image acquisition systems encounteréeggendre moments with scale and translation invariance wer
in practice, e.g. Gaussian, Exponential, Poisson, Rdykeig used as shape descriptdrs [9]. Indeed, momeénts [13] give a
cite a few. The multi-parameter exponential families ateitha region-based compact representation of shapes through the
rally indexed by a&-dimensional reahatural parameterec-  projection of their characteristic functions on an orthoglo
torn = (n1,...,n)" and ak-dimensionahatural sufficient ~ basis such as Legendre polynomials.
statisticvectorT = (T1,...,T})T. A simple example is the The shape prior is then defined as the Euclidean distance
normal family when both the location and the scale paramebetween the moments of the evolving region and ones of the
ters are unknownk( = 2). Formally, the pdf of a vector of reference shape,



A, Qres) = [INQ) = M Qesp) |3 (7 where we assign a specific noise model to the background
) , (outside) region, possibly different from the noise model o
where\(€2) are the moments of the regidd In practice, e ghject (inside) region. The energy teffy is a regular-
infinite moment expansion is generally limited to a suffitien ;,ation term balanced with a positive real parametelt can
finite number resulting in a good approximation of the origi-pe chosen as the curve length and classically derived using
nal shape. The criterion then reduces to: calculus of variation or shape derivation tools.

pHash ) To drive this functional towards its minimum, the geomet-
A, Qrep) = > Apg() = Apg () (8)  rical PDE corresponding t&(1L0) is iteratively run witholet
Pq shape prior, then the shape prior term is updated, and the ac-

where the\,,, are defined as follows, using the geometric mo-liveé contour evolves again by running the PDE with the shape
ments)M,,, and the coefficients,, of the Legendre polyno- Prior. This procedure is repeated until convergence. This i

mials [T21: erative optimization scheme has a flavour of coordinate re-
i » q laxation. At this stage, it is worth pointing out some major

Apg = Cpg Z Z Apu gy My (9) differences between our algorithm and the one developed in

u=0 v=0 [9]. The first one is that we here consider both photometric

(2p+1)(2041) ) (noise) and geometrical (shape) priors, while [9] focused o
whereCy,, = ===, M (Q) = [, aPy?dedy, and  the shape prior and did not considered noisy data. This dif-

the Legendre polynomials are defined as : ference has a clear impact on the evolution algorithm since
» 1 & those authors propose to run the evolution equation onlg onc
P,(z) = Z%kxk =—— (- 1) without the shape prior and then incorporate the shape prior
=0 2rp! daP in the evolution. This is fundamentally different from our a

, . ternating scheme.
In general, the reference shape can have different orien-

tation and size compared to the shape to be segmented. T'Afgorithm 1 Evolution algorithm of the active contour
will then necessitate an explicit registration step in otdee-
. o 1: repeat
align the two shapes. In order to avoid this generally pnoble . . . . . .
. ) . o 2:  Evolution using noise prior for iterations
atic registration step, we here use scale and translati@niin

: X 3:  repeat
ant Legendre moments as [d [9]. In the geometric moments . . . . .
e . ; ; X T Evolution using shape prior for 1 iteration.
definition, the scale invariance is embodied as a normaliza- : :
. ) 1 S ; . 5. until Maximum shape speed threshold
tion term: =7z As far as translation invariance is con- .
Qpta 6: until Convergence

cerned, we replaceandy in the geometric moment¥,,, by
z — z andy — g, (z,y) are the shape barycenter coordinates.
The derivation of the criteriori 18) is relatively complex.

We here give the main formula. 6. EXPERIMENTAL RESULTS
ut+v<N
< d'(Q,Qes), V >= Z Ay (Hyp + Luw) N The above evolution scheme was applied on some synthetic

data withy (x) = I(x) the image intensity. Figl1.(a) depicts
a shape corrupted by an additive white Gaussian noise with
where SNR=1, with the initial curve. To bring to the fore the con-
p+g<N s (@—2)"(y—p)° t_ribution of t_he_shap(_e prior term, parts of the objects are de
Auw =2 Z (Apg=Apq’ )Cpqpuage Huw = o T Oy liberately missing. Figll.(b) (resp. (c)) shows the segiaen
Pya tion result with the noise model (Gaussian) but withoutgres

u,v

uZ My 1.0 VJMyo1 (u+v+2) My, with) the shape prior. As expected, one can clearly see that:
Luw = W(l_xHW(l—y)_T (i) without a shape prior, the final curve sticks to the appar-
The reader may refer tb][9] for further details. ent boundaries of object, (ii) owing to the shape prior, the
algorithm managed to recover properly the missing parts of
5 SEGMENTATION WITH JOINT NOISE AND f[he object. Furthermore, in addition to its robustne_ss wBmi
SHAPE PRIORS ing data, we have also observed that the shape prior allows to

mitigate initialization issues. As far as the noise priocds-
The region-based active contour functional to be minimized€rned, choosing the appropriate model has a clear impact on

is finally written as: the quality of the results as it has been shown in [6].
_ We then tested our approach on real echocardiographic
Tin, Qoue) - = /Qm Fn (%, Qin) dx + 0t d(Qin, Qres) images. As the Rayleigh distribution is well suited to model

the noise in these dafa [8], this noise model was used in €orol
+ /Q t Fn (%, Qour) dx + B E(I) - (10)  |ary[Al. The original image (Figl2.(a)) is shown with the ini-
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Fig. 1. a. Noisy image with initial contour, b. Final contour wittiou
shape prior, c. Final contour with shape prior.
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Fig. 2. a. Echocardiographic image with initial contour, b. Comtou

draw by an expert, c. Final contour without shape prior, chaFi

contour with shape prior, e. Final contour using AAMM method

f. Hamming distance for one echocardiographic sequencd ohi
ages.

tial contour position. We compared the result of our methoélo]
(fig[2), with (d) and without (c) the shape prior, to an expert
manual segmentation (b), and a segmentation provided by L]
Active Appearance and Motion Model (AAMM) method (e)
designed for echocardiography [14] 15]. Again, the salienc

of our method is obvious. Our method gives the closest se
mentation to the expert manual delineation. This is quant
tavely by the Hamming distance plots (f), showing that our

method outperformes AAMM.
7. CONCLUSION AND PERSPECTIVES

This paper concerns the incorporation of both noise andshaygm]
priors in region-based active contours. The evolution ef th

active contour is derived from a global criterion that conds
statistical image properties and geometrical informatttta-

tistical image properties take benefit of a prespecifiedenois

mizing the distance between Legendre moments of the shape
and those of a reference. The Legendre moments are designed
to be scale and translation invariant in order to avoid tlge re
istration step. The combination of these terms gives ateura
results on both synthetic noisy images and real echocardio-
graphic data. Our ongoing research is now directed towards
the integration of a complete shape learning step.
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