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ABSTRACT

This paper proposes a new method for the selection of sets of omni-
directional views, which contribute together to the efficient represen-
tation of a 3D scene. When the 3D surface is modeled as a function
on a unit sphere, the view selection problem is mostly governed by
the accuracy of the 3D surface reconstruction from non-uniformly
sampled datasets. A novel method is proposed for the reconstruc-
tion of signals on the sphere from scattered data, using a general-
ization of the Spherical Fourier Transform. With that reconstruction
strategy, an algorithm is then proposed to select the best subset ofn
views, from a predefined set of viewpoints, in order to minimize the
overall reconstruction error. Starting from initial viewpoints deter-
mined by the frequency distribution of the 3d scene, the algorithm
iteratively refines the selection of each of the viewpoints, in order to
maximize the quality of the representation. Experiments show that
the algorithm converges towards a minimal distortion, and demon-
strate that the selection of omnidirectional views is consistent with
the frequency characteristics of the 3D scene.

1. INTRODUCTION

The main objective of Image based rendering (IBR) is to describe a
3-dimensional scene from a set of reference images, taken from dis-
crete viewpoints in the space. It then allows to generate new views
of the scene from arbitrary positions using the description provided
by reference images. The increasing popularity of such approaches
for the coding of 3D scene coding is certainly due to high complex-
ity reduction, compared to the classical 3D objects coding methods.
Indeed, the 3D information is obtained from normal cameras, the
coding step essentially reduces to image coding, and IBR does not
require special 3D rendering hardware at the user side.

IBR methods generally use the plenoptic function [3] to describe
the light field that characterize the 3d scene. Each image is a set of
samples from the plenoptic function, and the performance of an IBR
scheme therefore greatly depends on the choice of viewpoints for
the reference images, or equivalently the camera positions. Images
have to be chosen such that all parts of the scene are visible, with
sufficient sampling density for high quality reconstruction. More-
over, the scene should be described with equal accuracy in all areas,
in order to avoid over-sampling and under-sampling effects in the
reconstruction of arbitrary views. In general, the number of images
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directly drives the size of the representation, and the bandwidth re-
quirements for transmission.

We propose here a framework where a 3D scene is captured
by multiple omnidirectional cameras, whose output images are ap-
propriately mapped into spherical images that represent the light in
its natural radial form [6]. Processing the light field directly in the
spherical domain allows to avoid discrepancies due to Euclidean ap-
proximations in common IBR schemes. Moreover, omnidirectional
cameras offer generally a much wider field of view, which reduces
the number of necessary images for reconstruction of the scene. We
consider that 3D objects can be represented as continuous functions
in the 3D space, in particular as function belonging to the space of
square integrable functions on a unit sphere. This approach is mo-
tivated by recent works on representation and compression of 3D
objects as functions on the sphere [1, 4, 7]. By modelling a 3D scene
with a continuous function we can achieve a consistent reconstruc-
tion of arbitrary views without over-sampling nor under-sampling.
The view selection problem can then be reduced to a non-uniform
sampling problem on the sphere. From initial set ofn viewpoints, an
iterative algorithm is finally proposed to selectively alter the choice
of viewpoints, such that the overall distortion in the scene recon-
struction is minimized.

The paper is organized as follows. In Section 2 we describe
the framework for scene representation with omindirectional views.
A new method for interpolation from non-uniform samples on the
sphere is proposed in Section 3. Section 4 presents the view selection
algorithm, and experimental results are given in Section 5. Section 6
concludes the paper.

2. FRAMEWORK

We consider a framework where a 3D object is observed by multi-
ple omnidirectional cameras, which represent the light field under a
spherical form. The proposed approach for view selection is based
on sampling of the 3D object surface, which is modelled as a contin-
uous function on the sphere. It is described in the formr = f(θ, ϕ),
where(r, θ, ϕ) are the spherical coordinates of a point on the object
surface, when the center of the coordinate system coincides with the
center of the object. This parametrization is only valid for star-shape
models, i.e., models where each point on the surface corresponds to
only one direction in the spherical coordinate system. However, a
parametrization into a finite number of spheres is feasible for more
complex models, with an appropriate tessellation of the surface [2].

Figure 1 shows a 2D slice of a synthetic scene, recorded byn
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Fig. 1. A 2D slice of a synthetic scene captured withn cam-
eras (only 3 are displayed for simplicity).

omnidirectional cameras. Suppose that camerai captures the dis-
tance of the point X to the center of the sphere, i.e., the radial co-
ordinate of this point in the coordinate system of camerai. We will
denote this system the camerai frame (Fi), while the coordinate
system of the object will be called the world frame (F0). Cartesian
coordinates of a point in different frames are related via the rigid
body transformation [12] in the following way:

Xi = Ri · X0 + Ti, (1)

whereXi,0 are the coordinates of the point X inFi,0, andRi

andTi are the rotation and translation matrices of a frameFi with
reference to the frameF0. The world frame is uniquely defined as
(r, θ, ϕ) coordinates in a spherical coordinate system.

We then consider a set of viewpointsP that are distributed around
the object. In other words, we define a discrete sampling of the world
frameF0. In order to obtain a discrete set of values forθ andϕ co-
ordinates, we have chosen to use the HEALPix [9] tessellation of the
sphere, which results in sphere partitions of equal area and therefore
gives the same importance to all possible viewpoints (placed in cen-
ters of the partitions). In HEALPix, a base mesh consists of 12 parts
of the sphere, and finer meshes are obtained by successive dyadic
partitioning of each part in the base mesh. The number of possible
viewpoints is given withNdir = 12N2

side, whereNside = 2lr and
lr is the resolution level. We finally choosenr arbitrary values for
the distance coordinater, so the total number of viewpoints in our
system is given byNpos = 12 nr N2

side.

The view selection problem consists in finding inP , the subset
of n viewpoints,Pn ⊂ P , such that the overall distortion in the
reconstruction of the scene is minimized. The Mean Square Error
(MSE) is used to assess the quality of the reconstruction, defined on
the sphere as :

MSE(f, f̃) = ‖f − f̃‖2 = 〈f − f̃ , f − f̃〉 (2)

=

Z
θ

Z
ϕ

(f(θ, ϕ) − f̃(θ, ϕ))2sinθdθdϕ, (3)

wheref is the signal on the sphere and̃f is its reconstruction.

3. RECONSTRUCTION FROM A SET OF
OMNIDIRECTIONAL IMAGES

By capturing depth information from multiple arbitrarily positioned
omnidirectional cameras, we obtain non-uniformly distributed sam-
ples on the sphere. Signal reconstruction from non-uniform samples
for 1D and 2D signals on the plane, has been studied intensively
in literature, where both theoretical and practical issues have been
considered [10]. However, interpolation from scattered data on the
sphere has been studied by only a few authors [5, 11], who have
mostly developed the theoretical frameworks, without considering
the practical implementation issues. We propose here a method for
object reconstruction from non-uniform samples obtained by multi-
ple cameras, based on the Fast Spherical Fourier Transform - FST [8].
FST decomposes a signal that belongs to the Hilbert space of square-
integrable functions on the two-dimensional sphereL2(S2, dω) into
a series of spherical harmonicsY m

l (θ, ϕ):

f(θ, ϕ) =
X
l∈N

X
|m|≤l

f̂(l, m)Y m
l (θ, ϕ). (4)

The Fourier coefficientŝf(l, m) are given with:

f̂(l, m) =

Z
S2

fȲ m
l (θ, ϕ)dω, (5)

wheredω(θ, ϕ) = d cos θdϕ is the rotation invariant Lebesgue mea-
sure on the sphere.

Let nowPM be the space of polynomials on the sphere, given
by:

p(θ, ϕ) =

N−1X
l=0

X
|m|≤l

a(l, m)Y m
l (θ, ϕ). (6)

An arbitrary sampling problem can then be considered as a dis-
cretization of above polynomials on the sphere. In particular,f(θj , ϕk) =
p(πj/2N, πk/N) in the case of uniform sampling. The sampling
theorem for uniformly distributed samples on the sphere has been
established by Driscol and Healy [8]. It states that if a signal on the
sphere is bandlimited, i.e., if̂f(l, m) = 0 for l ≥ N , then it can
be perfectly recovered from its uniform samplesθj = πj/2N, ϕ =
πk/N ; j, k = 0, ..., 2N − 1.

Consider next the problem of the reconstruction of a N-bandlimited
signal on the unit sphere, from non-uniform samples obtained from
n omnidirectional images. The signal is given byn sets of samples
Si, i = 1, ..., n, with each set containsqi samples of the object:
Si = (ri

j , θ
i
j , ϕ

i
j), j = 1, ..., qi. Hence, using the formula (6), for

each sample(ri
j , θ

i
j , ϕ

i
j), i = 1, ..., n; j = 1, ..., qi, we have:

ri
j = f(θi

j , ϕ
i
j) =

N−1X
l=0

X
|m|≤l

a(l, m)Y m
l (θi

j , ϕ
i
j). (7)

The previous relation can be rewritten in a matrix form as:

V · a = r, (8)

where

V = {Y m
l (θi

j , ϕ
i
j)}q×N2 , (9)

a = {a(l, m)}N2×1, (10)

r = {ri
j}q×1. (11)



By solving this linear system we obtain the values for coeffi-
cientsa(l, m), which are the approximates of Fourier coefficients
for the signalf on the sphere :

f̂(θ, ϕ) ≈ a = V −1 · r. (12)

SinceV is not a square matrix, finding its inverse is not an easy task.
The pseudo-inverse will give a minimal norm solution, resulting in
a stable reconstruction, but it is computationally very expensive. In-
stead of directly solving (8), we propose to multiply each side with
V ∗ = conj(V T ), which results in :

V ∗ · V · a = V ∗ · r, (13)

or equivalently :
T · a = R, (14)

with
T = V ∗ · V ; R = V ∗ · r. (15)

The matrix T is now a square matrix of sizeN2, so that solving
the system given in (14) instead of (8) is much less computationally
demanding. Another advantage of this transformation is that adding
or removing samples does not change the size of the system, as it
amounts to a simple addition (resp. subtraction), as given by :

(T ± ∆T ) · a = R ± ∆R, (16)

where∆T and∆R are obtained using (15) for set of added (resp.
deleted) samples.

4. VIEW SELECTION ALGORITHM

Now that a method has been defined to reconstruct an object from
scattered data, we can address the problem of the selecting the subset
of images or viewpointsPn that minimizes the overall distortion af-
ter reconstruction. The view selection algorithm first selects the ini-
tial viewpoints based on the frequency distribution of the 3d scene.
Depth estimation is performed from all images captured from each
viewpoint inP , in order to obtain a set of samplesS =

SNpos

i=1
Si,

whereSi is a set of depths seen fromith viewpoint. The scenef
is then approximated intõfall from S, using the FST-based method
(see eq. 14). Substituting̃fall in the spherical harmonic differential
equation, the distribution of frequencyw =

√
l2 + m2 of the 3D ob-

ject can be estimated. Animportance factorIFi is finally computed
for each view inP , as

IFi =

Pqi

j=1
w̃(θi

j , ϕ
i
j)

qi

,

wherew̃(θi
j , ϕ

i
j) is an estimate of the frequencyw at a sample(θi

j , ϕ
i
j)

originating from a viewi. Then viewpoints with highest importance
factor then form an initial set of images,Pn,0 = {V1,0, ..., Vn,0}.
Initial positioning obtained by using this frequency estimation ap-
proach highly increases the probability that the view selection algo-
rithm converges towards the global minimum of the error.

The view selection algorithm then iteratively refines each of the
initial viewpoints, as described in Algorithm 1. It basically proceeds
in three steps:

• Step 1: The initial viewpointsPn,0 = {V1,0, ..., Vn,0} are
chosen as the positions with the highest importance factors.

• Step 2: The first viewpoint is moved to other possible posi-
tions, while keeping all viewpoints fixed. In each case, the ob-
ject is reconstructed using the FST-based method from depth
maps seen only fromn, for each of these possible positions
of camera 1, and creates̃fm

1,0; m = 1, ..., l. The distortion is
calculated for each one of these approximations, with respect
to f̃all. The minimal value for MSE will give the best position
for camera1 at this iteration, andV1,0 is assigned the value
of the best viewpoint for camera 1. The same procedure is re-
peated for all the viewpoints, by altering one of the positions,
while all the other stay unchanged.

• Step 3: After finding the best position for cameran, the algo-
rithm goes back to the camera1 and repeats the Step 2 with
a new set of camera positionsPn,1, obtained from a previous
iteration. The search is continued until it reaches the stable
solution (Pn), i.e. when the change of position of any camera
does not lead to reduction in MSE, i.e.,Pn,i = Pn,i−1.

Algorithm 1 View Selection

Input: P, S, f̃all, Pn,0 = {V1,0, ..., Vn,0}
i = 0; j = 0
repeat

Si =
⋃n

k=1 Sk,i, whereSk,i is a set of surface samples
seen from viewVk,i

P 0
n,i = Pn,i

repeat
j = j + 1
PVj,i = P \ (P j−1

n,i \ Vj,i) = {V 1
j,i, ..., V

l
j,i}

PSm
j,i = Sm

j,i ∪ {
⋃n

k=1;k 6=j Sk,i} for m = 1, ..., l

reconstructf̃m
j,i from PSm

j,i using the FST method for
m = 1, ..., l
Lm = MSE(f̃m

j,i, f̃all) for m = 1, ..., l

Vj,i = {V M
j,i |LM = minm=1,...,lLm}

P
j
n,i = {V1,i, ..., Vn,i}

until j = n

i = i + 1;
Pn,i = Pn

n,i−1

until Pn,i = Pn,i−1

5. EXPERIMENTAL RESULTS

The performance of the proposed method is evaluated on a arbitrar-
ily shaped synthetic object, shown on Figure 2. The number of pos-
sible viewpoints used in simulations is set toNpos = 144, with
Nside = 2 andnr = 3 (r1 = 7, r2 = 10, r3 = 13). The view-
points selected by the view selection algorithm are represented for
the cases ofn = 4, 5 and6 cameras. The initial set of viewpoints
chosen from the frequency distribution is also represented forn = 6
(for n = 4 andn = 5 initial set of viewpoints is a subset of the
initial set forn = 6). The resulting selection of viewpoints is con-
sistent with the object shape, namely camera positions are chosen so
that the object is sampled more densely in the areas with higher fre-
quency content. Moreover, it is interesting to note that most of the
viewpoints are placed on the sphere with the smallest radius, which
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Fig. 2. View selection algorithm: results for 4, 5 and 6 cam-
eras, with initial viewpoints set.

Table 1. MSE for reconstruction from n best viewpoints, with
n=4, 5 and 6.

n MSEmin j
4 8.8556e-13 16
5 1.8161e-13 16
6 9.8843e-15 22

means that the influence of view resolution on positioning is higher
than the visibility of the object surface, when the number of view-
points is large enough.

Table 1 presents the results of camera positioning forn = 4,
5 and6 cameras respectively, in terms of MSE of the reconstruc-
tion. It also represents the number of iterations of the algorithm,
j, which are required to reach convergence. We see that the MSE
decreases with the number of viewpoints, as expected, and that the
convergence is quite fast, even for increasing number of cameras in
the system.

6. CONCLUSIONS

This paper introduces a view selection algorithm for 3D scene rep-
resentation with a set ofn omnidirectional cameras. 3D objects are
modeled as functions on the unit sphere, and a method for the recon-
struction of 3D objects from non-uniformly spaced samples is pre-
sented. The view selection algorithm then initializes the viewpoints
based on the frequency distribution of the object. It then iteratively
refines each of the camera positions, until the distortion of the recon-
struction is minimized. Experimental results show that the proposed
algorithm selects viewpoints, in such a way that parts of the scene
with higher frequencies are sampled more densely; it is exactly the
intuition one would start with in dealing with the positioning prob-
lem. The proposed framework and view selection algorithm repre-
sents an promising alternative in the representation and coding of 3D
scenes, based on spherical image-based rendering approaches.
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