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ABSTRACT

Content-based image retrieval has become an indispensable tool for
managing the rapidly growing collections of digital images. The
goal is to organize the contents semantically, according to mean-
ingful categories. In recent papers we introduced a new approach
for semantic image classification that relies on the adaptive percep-
tual color-texture segmentation algorithm proposed by Chen et al.
This algorithm combines knowledge of human perception and signal
characteristics to segment natural scenes into perceptually uniform
regions. The resulting segments can be classified into semantic cate-
gories using region-wide features as medium level descriptors. Such
descriptors are the key to bridging the gap between low-level image
primitives and high-level image semantics. The segment classifica-
tion is based on linear discriminant analysis techniques. In this pa-
per, we examine the classification performance (precision and recall
rates) when different sets of region-wide features are used. These in-
clude different color composition features, spatial texture, and seg-
ment location. We demonstrate the effectiveness of the proposed
techniques on a database that includes 9000 segments from approx-
imately 2500 photographs of natural scenes.

Index Terms— Content-based image retrieval, semantic anal-
ysis, segment classification, feature extraction, adaptive perceptual
color texture segmentation.

1. INTRODUCTION

The field of content-based image retrieval (CBIR) has been quite
active in recent years, as the number and size of digital image repos-
itories have been rapidly growing. The primary emphasis has been
on query by example techniques, which attempt to match low-level
image features, such as color and texture, with or without relevance
feedback by the user. A comprehensive review can be found in [1].
A more challenging problem is to first assign semantic labels to each
image, so that retrieval can be based on semantic information. How-
ever, it has been difficult to infer high-level semantics from low-level
features. This is known as the semantic gap.

Several approaches have been proposed recently that attempt to
bridge the semantic gap. Most of them incorporate an image seg-
mentation scheme, and then use the segment features and their con-
tent within the image to derive semantic information [2-6].

In an attempt to obtain a CBIR system that better approximates
the performance of the human visual system (HVS), we have pro-
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posed a novel approach for image indexing that utilizes perceptual
models for image segmentation and classification [7, 8]. It relies
on the adaptive perceptual color-texture segmentation algorithm pro-
posed by Chen et al. [9]. This algorithm combines knowledge of hu-
man perception and signal characteristics to segment natural scenes
into perceptually uniform regions. The resulting segments can be
classified into semantic categories using region-wide features as me-
dium level descriptors. Such descriptors are the key to bridging the
gap between low-level image primitives and high-level image se-
mantics. In [7, 8], we presented linear discriminant analysis tech-
niques for assigning labels to image segments based on color compo-
sition and spatial texture descriptors. However, several questions re-
garding the necessity and effectiveness of each feature remain unan-
swered. In this paper, we examine the classification performance
(precision and recall rates) when different sets of region-wide fea-
tures are used. These include different color composition features,
spatial texture, and segment location. We show that all three types of
features are necessary. We also show that more precise information
about the first and second most dominant color is more important
than more accurate information about the color composition at the
expense of coarser color quantization. We demonstrate the effec-
tiveness of the proposed techniques on a database that includes 9000
segments (obtained using the algorithm in [9]) from approximately
2500 photographs of natural scenes.

While further improvements can be achieved by incorporating
the segment size and boundary shape, as well as the properties of
the neighboring segments, the results of this papers demonstrate that
color composition and spatial texture alone can achieve quite im-
pressive results. We also show that as we add more features, such as
segment location, the results keep further improving.

The focus of this paper is on still images. The techniques we
discuss, however, can also form the basis for content-based analysis
of video sequences. We consider the domain of photographic images
with a wide range of content (indoor and outdoor natural and man-
made scenes).

2. COLOR-TEXTURE FEATURE SELECTION

In this section, we briefly review the perceptual color-texture fea-
tures that form the basis of both image segmentation [9] and segment
classification. There are two types of spatially adaptive features.
The first provides a localized description of the color composition
of the texture and the second models the spatial characteristics of its
grayscale component.

The color composition feature consists of a small number of spa-
tially adaptive dominant colors and the corresponding percent occur-
rence of each color in the vicinity of a pixel:
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Fig. 1. Color-texture image features and segmentation. (a) original color image (b) adaptive dominant colors (c) texture classes (smooth
regions are shown in black, horizontal in gray, and complex in white) (d) final segmentation

where ¢; is a 3-D color vector and p; is the corresponding percent-
age. N, denotes the neighborhood of the pixel at (z,y) and M is
the number of dominant colors in V.,,; a typical value is M = 4.
The spatially adaptive dominant colors are obtained using the adap-
tive clustering algorithm (ACA) [10]. An example is shown in Fig-
ure 1(b).

The spatial texture feature extraction is based on a steerable filter
decomposition with four orientation subbands (horizontal, vertical,
+45°, -45%). Here, we use a one-level decomposition. The local en-
ergy of the subband coefficients provides a simple but effective char-
acterization of spatial texture. At each pixel location, the maximum
of the four subband coefficients determines the texture orientation.
A median filtering operation boosts the response to texture within
uniform regions and suppresses the response resulting from to tran-
sitions between regions. The pixels are then classified into smooth,
horizontal, vertical, +45°, -45°, and complex (i.e., no dominant ori-
entation) categories. An example is shown in Figure 1(c).

The segmentation algorithm combines the color composition and
spatial-texture features to obtain segments of uniform texture. Sev-
eral critical parameters of the texture features and segmentation al-
gorithm can be determined by subjective tests [11].

3. SEGMENT-WIDE FEATURE EXTRACTION

We now review the development of medium level color and spatial
texture descriptors. While image segmentation requires a combina-
tion of local and global features [9], region classification requires
segment-wide features [7]. Thus, for each segment, the color com-
position and spatial texture features must be recalculated using only
information from within the segment, that is, the local averages and
medians are computed across and strictly within the segment. The
texture features of the segment can be similarly described by the per-
centage of smooth, horizontal, vertical, +45°,-45°, and complex pix-
els . An example is shown in Fig. 2, where (a) shows a segmented
image, (b) shows a selected segment, (c) shows the segment-wide
color composition (dominant colors and percentages), and (d) shows
the region-wide spatial texture features (percentage of smooth, hori-
zontal, vertical, +45°, -45°, and complex pixels).

As we saw in [7], there is an asymmetry between the two types
of features. While the spatial texture features consist of six labels
and the corresponding percentages, the color composition features
consist of up to four dominant colors (each with a continuum of val-
ues) and the associated percentages. One approach to reducing the
dimensionality of the color composition features, is by quantizing
the colors. In [7], we assigned color names to the dominant colors of
each region using the procedure proposed in [12]. The syntax con-
tains color names for 267 regions in color space, and is summarized
in Table 1. If we assign labels based on hue only, we end up with
14 labels (and corresponding percentages) instead of a continuum of
color values, which establishes a symmetry with the spatial texture
features. The use of a limited number of colors is consistent with

. Y -

1

(©) (d)

Boynton’s study, which found that when people are asked to cate-
gorize colors, the number of perceptually distinguishable color cate-
gories is small. (See his 1989 paper “Eleven colors which are almost
never confused” [13].) The eleven color can be obtained by elimi-

Prim. Hue | Sec. Hue | Saturation | Lightness | Achromatic
Red Reddish Grayish Blackish Black
Orange Brownish | Moderate | Very-dark Gray
Brown Yellowish Medium Dark White
Yellow Greenish Strong Medium
Green Bluish Vivid Light
Blue Purplish Very-light
Purple Pinkish Whitish
Pink
Beige
Magenta
Olive

Table 1. Color Naming Syntax

nating the olive, magenta, and beige categories. Further reductions
in the number of colors are possible, for example, by eliminating the
pink and orange categories.

Another approach for dominant color representation is as a co-
ordinate in L*a*b* color space. Our statistical analysis of dominant
colors [8] revealed that using the two dominant colors with high-
est percentage (the first and second dominant colors) is sufficient to
describe the segment color composition. In our implementation we
use the first dominant color and difference between first and second
dominant colors for the total of six features.

4. SEGMENT CLASSIFICATION

We performed several experiments using approximately 2500 pho-
tographs. The majority of the images were obtained from the Corel
Stock Photo Library. Additional images were obtained from a Key
Photos Library and the investigators’ personal repository. The im-
ages cover a variety of outdoor scenes, with a wide range of themes.
The images were segmented using the adaptive perceptual color-
texture image segmentation algorithm [9], and the segments were
manually labeled to be used as the ground truth in supervised learn-
ing. Each segment was assigned exactly one label. Segments with
area less than 3% of the total image area were not considered. This
resulted in approximately 9000 labeled segments, 80% of which
were used for training and the rest for testing.

For the training and classification we used the Linear Discrim-
inant method (LDA) [14]. LDA is the method that belongs to the
class of linear classifiers, which try to find a projection to a lower di-
mensional space such that samples from the different classes are well
separated. LDA attempts to find directions that maximize variance
among the means of different classes (between class scatter) and at
the same time minimize the variance within each class (within class
scatter). To achieve this goal, LDA maximizes the following objec-
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Fig. 2. Segment-wide feature extraction. (a) Segmented image. (b) Selected segment. (c) Its color composition. (d) Its texture composition.
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The objective function J(w) is maximized by solving the general-
ized eigenvalue problem Spw = ASww We should also note, that
for LDA to work, the data for each class has to form a single clus-
ter. Furthermore, although not a requirement, LDA assumes that the
underlying class distribution can be approximated with a Gaussian.

It is reasonable to expect that a particular label may consist of
more than one cluster. For example, the label “water” may be repre-
sented by blue dominant color and smooth or horizontal texture, thus
resulting in two clusters. To deal with such cases, we experimented
with applying the K-means algorithm to each category in the train-
ing set to create additional clusters before applying LDA. Note that
misclassification among clusters that belong to the same label is not
recorded as a classification error.

5. RESULTS

‘We evaluated the performance of the proposed techniques using stan-
dard measures that are used in the literature. The recall is the ratio
of the correctly classified segments to the total number of segments
with the given label in the database. The precision is the ratio of the
correctly classified segments to the total number of segments that
the algorithm assigned to the particular label (correct and incorrect).
Both performance measures are expressed as percentages.

The goal of our experiments is to identify the most suitable set
of features for segment classification. In [8], we found that using the
texture features presented in Section 2 and the precise color value of
the first dominant color outperforms the texture features combined
with 14 quantized dominant colors. This is a somewhat unexpected
result. Our goal here is to try different sets of features in order to
establish their necessity for the classification task.

The recall and precision rates for the several feature sets and
techniques are shown in Fig.3. The first two plots show the classi-
fication results for LDA based only on color compositions features
with eleven and fourteen perceptually quantized colors. Our results
indicate that there is no significant difference between the two cases.
We also considered reducing the number of dominant colors to nine,
and again, found no significant difference in performance. On the

other hand, increasing the number of colors beyond 14 by including
information about the lightness/saturation or secondary hue, leads to
dependencies between the feature vector components (perceptually
similar colors) and performance degradation.

The next two plots present the classification results using only
spatial texture and spatial texture with eleven perceptually quantized
colors, respectively. It can be concluded that spatial texture plays
an important role in classification feature by itself or in combina-
tion with color, resulting in significant improvement in recall and
precision rates The following two plots show that using spatial tex-
ture with the unquantized color value of the first dominant color (in
L*a*b* color space) or first and second dominant color outperforms
the use of all the dominant colors perceptually quantized. Here, the
first dominant color is expressed as an L*a*b* coordinate, while sec-
ond is expressed as a difference. Note that adding information about
the second dominant color improves the classification even further.

The last two plots show the effect of adding the segment posi-
tion to the feature vector. It is expressed as the centroid normalized
by the size of the image. As expected, adding position improves
classification performance, especially for separating the sky and wa-
ter categories. Finally, the last plot shows the result obtained by
applying the K-means algorithm followed by LDA, in order to add
within-class clusters. This yields a modest improvement in precision
(6% on the average) while the recall remains the same.

Overall, our segment classification results compare well to the
methods described in the literature (e.g., [15-20]). The precision and
recall rates are quite good and serve as validation of the selected fea-
tures. They also indicate that the adaptive perceptual color-texture
segmentation algorithm does indeed provide semantic information.
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