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Abstract

This thesis is composed based on the original investigations of author in the field of
computerized lung nodule détection in computed tomography (CT) images. The
methodologies discussed in this thesis include two main topics of region of interest detection
and enhanced false positive (FP) reduction. The system, which is developed to be a
supplementary diagnostic tool for radiologists, first spots all the regions suspected to be
nodules in lung. Then it pins down the candidates with highest possibility of being nodule
through a series of rule based filtering stages. Finally an enhanced false positive reduction
system, which is in fact designed as a hybrid scheme based on learning algorithms, reduces
the false positive detections further. The overall system performs with 72% sensitivity and
2.42 FPi/slice, which competes with state-of-the-art methods. The system was tested on a
database consisting of 24 pediatric clinical subjects with 1190 images and 154- metéstatic

nodules.
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1 Introduction

Advancements in technology have had great impact on medical sciences. Nowadays,
from examination and diagnosis steps to treatment and post-treatment stages, engineering and
applied sciences are exploited to reach faster and more accurate results. The developing field
of biomedical engineering is a broad area of knowledge providing the link between medicine
and engineering. According to the Whitaker Foundation, which is a premier supporter of
biomedical research, biomedical engineering is a discipline that advances knowledge in
engineering, biology and medicine, and improves human health through cross-disciplinary
activities that integrate the engineering sciences with the biomedical sciences and clinical
practice [1].

One important area of biomedical engineering is the field of medical imaging.
Medical imaging can be categorized into two main divisions of medical image acquisition
and medical image processing. The former includes the apparatus and devices (hardware) of
acquiring static or dynamic medical images, while the latter deals with algorithms and
systems (software) that process, analyze and interpret imaging data. Imaging devices work
with a variety of modalities, such as computed tomography (CT), radibgraphy, magnetic

resonance imaging (MRI), ultra sound, etc.
1.1 Computed Tomography

Computed Tomography (CT) is defined as a non-invasive procedure that takes cross-
sectional images of the brain or other internal organs to detect any abnormalities that may not
show up on an ordinary x-ray. CT simply generates images, which in fact shows sequential
layers of a specific organ. When this series of images is viewed together, it represents a three
dimensional view of the examined organ. While most of the other methods of imaging have
the disadvantage of superimposed structures due to the projection of the three dimensional

human body onto a two dimensional image, the CT images do not suffer from this problem

[2].



Conventional CT involved an x-ray source that rotated around the patient, who was
enclosed in a doughnut-shaped gantry. The housing was designed so the x-ray source rotated
over the patient to obtain a single transverse image and then unwound to prepare for another
rotation and another scan. The patient was required to suspend respiration for each scan.
Then, patient and operator had to wait for realignment of the table before the next scan could
begin. In recent years, with more powerful computers and higher energy x-ray tubes, a
process known as helical CT has developed, which consists of continuous activation of the x-
ray source and continuous movement of the tabletop through the gantry, resulting in
volumetric acquisition. In other words, whereas conventional CT required a stop-start
maneuver to acquire a single slice, helical CT uses similar, but much faster and nonstop,
technology to acquire multiple transverse slices and volumetric results [3]. With emergence
of new multi slice CT scanners, acquisition of thin slice scans in a very short period of time
has become possible. In the last decade, spatial resolution achievable with state-of-the-art CT
scanners has increased more than 10 fold [4].

The intensity of pixels in a CT image is expressed in Hounsfield Units (HU), which is
a quantitative scale for describing radiodensity. According to this scale the radiodensity of
distilled water at standard temperature and pressure (STP) is defined as zero HU. The
radiodensity of air at STP is defined as -1000 HU.

1.2 CT and Lung Diseases

Computed tomography has proved to be a useful tool for diagnosis and surveillance
of pulmonary abnormalities, specially lung cancer. Imaging protocols on single detector
scanners typically generate about 40 images in a thoracic CT exam, while multi-slice
protocols may generate 300-600 high resolution axial images [S]. New scanners, which now
have a spatial resolution of less than a millimeter, routinely provide detailed images of early-
stage lung cancer [4]. Figure 1.1(a) shows the chest radiograph of a patient, while figure
1.1(b) presents a visualization of the stack of CT images for a patient. As it is apparent in
these images, in the case of radiograph, some details are hidden or difficult to observe due to
the nature of radiography which superimposes the whole 3D structure of organ onto a 2D

image. Therefore, distinguishing different structures (e.g., lung parenchyma, bones, nodules,



vessels, etc.) from a radiograph is not as accurate as when multiple cross sectional images are
acquired from the lungs as in CT. Figure 1.1(c) shows the image of one section (one CT
s]ice) of the thorax. When viewed and compared together the series of CT images can
provide useful information about the location, shape and connectivity of various structures.
This fact in addition to the following points can be considered as main reasons for the
significant effect of CT technology on diagnosis and surveillance of lung diseases,

particularly lung nodules:
1) Increase of the spatial resolution achievable with state-of-the-art CT scanners

2) The advent of multi-detector row scanners combined with gantry rotation times of
less than 500 milliseconds per rotation [2].

3) Growing awareness of lung cancer screening by using a low dose helical CT protocol

[6].
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Figure 1.1: Chest radiograph and CT
(a) A sample chest radiograph. The lung region containing air is darker and traces of ribs (light curves) can be
seen in that region. Some lung nodules have been marked on this radiograph with black circles. (b) Three
dimensional visualization of lung and the way stack of CT slices are generated by capturing images from
different depths of lung volume. (c) A sample CT image. The air-filled lungs appear in dark (about -1000 HU),
while body tissue and vessels appear in lighter intensities (-500 HU and above).



Since the following sections of this thesis deal with identification and
classification of lung nodules, it is important to define the term lung nodule before

' moving on.
1.3 Lung Nodule

It is not easy to define a single definition that includes deterministic values for size,
shape and location of nodules. A couple of more prominent definitions explain nodule as:

1) Round opacity, at least moderately well margined and not greater than 3 cm in
. maximum diameter [7].
2) Small, approximately spherical, circumscribed focus of the abnormal tissue. [7]

While the first definition emphasizes more on the size and shape of a nodule, the
second definition reflects the three-dimensional nature of the physical lesion diagnosed as
nodule on the CT scans. Although these statements can be considered good descriptions for
the term nodule, but the natural intricacies of biologic systems make it difficult sometimes to
judge the existence of a nodule based on such definitions. It is therefore more comprehensive
~ to apply the term nodule to a spectrum of abnormalities, which is itself subset of a broader
spectrum of abnormalities, terméd focal abnormalities [2]. As it can be seen in figure 1.2,
focal abnormalities include a wider range from scars to non-specific opacities. Nodules lie
somewhere in between this range.

Nodules may be solid or sub-solid (part solid and nonsolid nodules). It has been
discovered by recent research that subtle nodules must be more clinically investigated, since
there seems to be a higher malignancy risk associated with sub-solid nodules [8].

While different studies choose different criteria for nodule inclusion in their research,
the Lung Image Database Consortium (LIDC) has decided to include only nodules (both
calcified and non-calcified) with diameter not exceeding 30 mm, in their database [2]. The
minimum diameter for included nodules has been set at 3 mm [7]. Nodules with less than 5
mm diameter seem to be less clinically significant. When suspicious to cancer though,
nodules even smaller than 3 mm diameter would be identified and sent for- further
examination.

Some examples of lung nodules can be seen in figure 1.3.



Focal Abnormality
Nodule

Figure 1.2: Spectrum of term nodule
The term nodule refers to a spectrum of abnormalities that is itself part of a larger spectrum of abnormalities
termed focal abnormalities. This scar (far left) is a focal abnormality that would not be considered a nodule, as
is the nonspecific opacity (far right), which is likely due to previous infection. The spiculated lesion (left-center)
and the compact lesion (right-center) are two representative examples of lesions within the nodule spectrum. All
images were obtained from transverse CT examinations [2].

Figure 1.3: Examples of a variety of nodules
Object 1 is a round distinguishable nodule. Objects 2, 3 and 7 are examples of nodules attached to lung wall
(juxtapleural nodule). Object 4 is example of a large interior nodule and object 5 is a small but not quite circular
nodule. Object 6 is a pale nodule hardly recognizable from background.

1.4 Computer Aided Diagnosis Systems (CAD)

CT, specially multi-slice exam protocols, provide the radiologists with large volume

of data, which is both time-consuming and laborious when manually assessed. This calls for



emergence of Computer Aided Diagnostic (CAD) systems. CAD has been defined as a
diagnosis made by a radiologist with the benefit of information generated by computerized
iniage analysis [9]. Computerized detection of lung nodules is now an important area of
research, with the ultimate goal of enhancing the diagnosis made by the radiologist.
Development and enhancement of lung nodule CAD systems have been among the popular

areas of medical imaging research in recent years.
1.5 Contributions

The major contributions of the author in this thesis are as follows:

e A multi-stage and target-specific region of interest (ROI) detection system for
identification of lung nodules in CT images is developed. The system recognizes and
deals with airway tube cross sections, elongated in-plane vessels and soft tissue, and
cross sections of in-depth vessels specifically and independently.

e Performance of the proposed ROI detection system is fast and with minor
computational complexity. The system is time efficient and the result data it generates
is easy to store and restore. These are significant advantages for a CAD system,
which is meant to be used in clinical environments.

e New features are designed and extracted in the feature extraction stage.

e A novel false positive reduction scheme, which classifies pulmonary data, based on a
combination of learning algorithms, is developed. The hybrid structure and adaptive
nature of this scheme make it an absolutely new method for FP reduction.

e FP reduction is achieved more effectively because various features (multidimensional
data) are converged into a single classification decision, in a way that

misclassification errors are minimized.

1.6 Outline

This thesis is composed based on the original investigations of the author on two
main topics of (a) detection of regions of interest (ROI) and (b) false positive reduction.

There have been two major initiatives for the undertaken research:



e Developing a computerized lung nodule detection system
e Developing an effective false positive reduction scheme to enhance the performance
of any rule based lung nodule CAD system.

Aftervthoroughly reviewing the literature on the concept of lung nodule false positive
reduction in chapter 2, chapter 3 explains a system designed by the author for detection of
lung nodules (ROI detection). A novel learning FP reduction scheme which has also been
proposed and implemented by the author will be discussed in chapter 4. A detailed
presentation and discussion of results will be made in chapter 5. Finally the conclusions and

future works will be presented in chapter 6.



2 Literature Review

2.1 Main Challenges in CAD

The ultimate goal of computerized lung nodule detection systems is enhancing the
diagnosis made by radiologist. The main challenges in developing a useful CAD system are
achieving:

1. High true positive (TP) detection rate
2. Low false positive (FP) detection rate

The first point refers to the fact that for a CAD system to be considered beneficial to
radiologist, its overall detection results must include most of (ideally all) those regions that
are truly nodules. If the CAD is incapable of highlighting true nodules for the radiologist
(low sensitivity performance), then there would be little motive for its application.

The second point has also been a major challenge for researchers and developers of
lung nodule CAD systems. Existence of large number of false positives in results would slow
down the diagnosis process for the radiologist. The ROI (regions of interest) detection stage
in CAD systems normally marks up a substantial number of candidates as potential nodules.
However, not all of those candidates are true nodules. They can be traces of in-plane or in-

depth vessels, bones, heart, diaphragm, or other lung abnormalities except lung nodules.

2.2 Overview

Identification of potential nodule candidates is a primary step in any lung nodule
CAD system, but reducing the number of false positive objects and pinpointing the most
suspicious regions on CT is perhaps the more critical part of work. Therefore the main
emphasis of this literature review chapter will be on the broad concept of FP reduction.
While ROI detection methods discussed in the literature will be briefly introduced in .each
section, more detail will be provided about the false positive reduction procedures

investigated by different researchers.



2.3 False Positive Reduction Methods in the Literature

FP reduction is often applied as a post processing step to the results produced by a
computerized ROI detection system. The FP reduction methods published in the literature
can be categorized into four main groups. In the following sections of this chapter, examples

of research from each category will be discussed.
2.3.1 Rule Based

In this method, false positive reduction is accomplished through setting certain rules
(conditions) and testing each candidate in the ROI for those conditions. The rules are often
set for one or more features of the candidates, such as geometrical and intensity related
features.

An early attempt for FP reduction through rule based feature analysis was carried out
by Kanazawa et al. [10]. After segmentation, fuzzy clustering and surface curvature analysis
(for removing those artifacts that are near the circumference of the lung fields), total of 8
features were extracted for ROI candidates. The features were area, thickness, circularity,
gray-level, variance of gray-level, localization, variance of gradient, and distance from the
lung wall. Then several diagnostic rules were set that put conditions (thresholds) on some of
the extracted features. The candidates were eliminated if they satisfied those conditions. The
main parameters checked by the rules were ROI thickness, circularity and existence of bone
in the adjacent slice images in the location of the current ROI. Total of 230 true nodules were
detected by physicians in the dataset of [10] and their suggested algorithm resulted in
sensitivity of 90% with 8.6 FP/case. The sensitivity performance of CAD was compared with
diagnosis sensitivity of three physicians. When only the results in which the three physicians
were in agreement were regarded as correct, the sensitivity of CAD system was above that of
the expert physician. A major drawback for system of [10] however is that it only targeted
nodules larger than a 4 mm diameter circle.

Zhao et al. also attempted rule-based FP reduction in their research work for
automatic detection of small lung nodules [11]. In their work, three ratios were calculated for

each ROI candidate. These ratios consisted of shape and size parameters associated with each

10



candidate. The defined rules ensure that the- remaining objects have relatively compact
shapes in both three dimensions and two dimensions and fall into the size range of nodule.
Tﬁere were a total of 266 simulated small nodules added onto eight chest CT scans, each
scan having 60 to 80 slices. The final detection sensitivity of system discussed in [11] is
84.2% and the average number of false positives per case was reduced to 5 (ranged 1 to 9).
The algorithm, without any modification, was directly applied to a clinical subject with four
actual small lung nodules. Three out of the four nodules were successfully detected by the
algorithm (75% sensitivity). There were nine false positive results, and one nodule was not
detected [11]. However this algorithm performed poorly when it was tested on other datasets
of clinical subjects [12].

In [13] three dimensional shape and connectivity analysis was accomplished to
reduce FP lung nodule detections at low-dose CT. In order to classify vessels (major source
of FPs) and nodules, the shape and gray value of each nodule candidate was considered. 3D
CT data was reconstructed from each CT slice handling only the vessel related data. Nodule
candidates were extracted by 3D region growing, and each was labeled using the connected
component labeling technique. For each candidate, volume, elongation factor, and
compactness were calculated. These parameters characterized the 3D shape of a nodule
candidate. Based on the knowledge that nodules are sphere-like and highly compact, while
blood vessels are tube-like and much less compact, the classification was automatically
performed and regions labeled as nodules were highlighted. However the authors of [13]
have not explained about how they set the rules (thresholds) on the shape, size and
compactness of objects. This method also had some other pitfalls including its poor
sensitivity performance when relatively thick section CT data was used. Thus, only nodules
greater than 5 mm in diameter were included in performance analysis. Even with such nodule
size range, the sensitivity of system was only 65% with 8 + 5.2 false-positive CAD results
per CT study.

In a recent research on 5 mm CT slices [14], FPs were reduced by using unique
features such as vessel and lung wall connectivity, a modified bounding box and 3D
compaction to compensate for partial volume artifacts due to thick CT slice. The dataset used
in that research consisted of 239 true nodules, with 41 nodules smaller than a 4 mm diameter

circle. Minimum size of nodule which was detected by system of [14] was 2.1 mm in
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diameter. This is counted as a plus for that system, as there are few CAD systems in the
literature that are capable of detecting very small nodules, i.e., nodule diameter less than 3
mm. The algorithm resulted in 80% sensitivity and 3 FP/slice. Further false positive
reduction was suggested to be the first action to be taken for improvement of that system.
Rule based techniques are sometimes carried out together with another method to
reach more effective FP reduction results. A popular paradigm found in the literature is the
combination of rule based and linear discriminant analysis [15-18]. Those examples will be

discussed in the following section.
2.3.2 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a supervised learning method which predicts in
which group an individual belongs (classification) based on a pattern learnt from labeled
training data. The goal of this mathematical tool is to develop optimal classification i.e.,
minimizing the total probability of misclassification and minimizing the costs of
misclassification. A number of examples of applying LDA for lung nodule FP reduction can
be found in the literature [15-18], [20].

The group of researches in University of Chicago has been among the very active
groups in the field of computerized detection of pulmonary abnormalities. They used
different types of linear discriminant analysis for the purpose of FP reduction in a series of
their studies [15-17]. In [15], after ROI detection through segmentation, cumulative gray
level analysis, histogram analysis and multi level thresholding (MLT), substantial FP
reduction was achieved by using linear discriminant analysis. Total of nine 2D and 3D
features were computed for each nodule candidate. That included six geometric features
(volume, sphericity, radius of the equivalent sphere, maximum compactness, maximum
circularity, and maximum eccentricity), and three gray level features (mean gray level within
the structure, standard deviation for the gray level, and the gray level threshold at which the
volume of the structure first decreased below the upper volume bound). The values of these
features for all nodule candidates were analyzed by the LDA classifier. A leave-one-out
scheme was chosen, in which the LDA classifier was trained by all except one nodule

candidate and the omitted candidate was subsequently used to test the trained classifier. The
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process of training and testing ihe classifier ;;vas independently repeated until all nodule
candidates had been used as the left out candidate for testing. The database in [15] comprised
a fotal of 17 patients (493 sections) with 187 pulmonary nodules. The effective diameter of
the nodules ranged from 3.1 to 27.8 mm. The system resulted in an overall sensitivity of 70%
with an average of 3 FP findings per section. Although the FP figure is not very eye-catching,
it corresponded to an 89% reduction in the number of FP findings after the application of
LDA.

In a continuation of their research, the same group utilized LDA in conjunction with
rule based FP reduction [16]. The huge pool of ROI candidates produced by the MLT stage
was filtered by testing for three rule based conditions: eccentricity, pixel value standard
deviation and cross-sectional area. The intension of this step was to eliminate “obvious” false
positive detections. After the rule based scheme was applied, the remaining candidates were
input to an automated LDA classifier. The feature vector consisted of the same nine features
used in [15] but a leave-one-out-by-case analysis was performed this time, in which the
nodule candidates from 42 cases were used to train the classifier, which was then applied to
the nodule candidates from the remaining case (patient). This process was repeated until
scans of all 43 patients in the database had been used as the left out case. The 171 true
nodules in the database ranged between 3 to 25 mm in size. The automated method yielded
an overall nodule detection sensitivity of 70% with an average of 1.5 FP/section. The study
also presented statistics about the dependence of nodule detection sensitivity on nodule size
at a fixed FP rate of 1.5/section. When only those nodules in the database with effective
diameter of 5 mm or greater were considered, 80% of the nodules were accurately detected
by the automated method. Effective diameter was defined as the diameter of a circle with
area equal to the maximum area of a nodule in any section in which it appears.

In a lung cancer screening program [17], Armato ef al. once again applied a
combination of rule based and discriminant analysis methods for FP reduction, however this
time jackknife model LDA was used. In the jackknife approach, features extracted from half
of the database were used for training the linear discriminant function and the other half of
database was used for testing. The nodule candidates that emerged from the LDA with values
below a specified LDA output value were considered detected nodules. The overall

performance of the method was obtained from the average performance of ten random
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partitions of the nodule candidate set into training and testing subsets. An overall detection
sensitivity of 70% (330 of 470) was attained with an average of 1.6 FP/section. The effective
diameter of true nodules ranged between 3 to 25 mm and nodules with effective diameter
between 5 tb 7 mm were most frequent. In that study, effective diameter of each nodule was
computed as the mean bounding region dimension (one-half of the sum of the short and long
axis lengths). When a nodule was present in more than one section, the bounding region with
the greatest area was used for the effective diameter calculation. This study discussed the
relative performance of the method in detection of lung nodules in various malignancy status,
size, subtlety, and radiographic opacity categories. The overall performance of the automated
lung nodule detection method decreased for nodules of increased subtlety and for nodules
with an increased non-solid component.

Gurcan et al. [18] also applied linear discriminant analysis for FP reduction both with
and without a rule based FP reduction step. They used a stepwise [19] method to extract 14
features, including six 3D and nine 2D features. The 3D features were volume, surface area,
average gray value, standard deviation, skewness and kurtosis of the gray value histogram. In
addition, area, perimeter, circularity, compactness, major and minor axes and their ratio, and
eccentricity of a fitted ellipse in each cross section of the 3D object were calculated. The
maximums of these values were used as the object’s 2D feature values. In the first stage of
FP reduction a rule based analysis was performed that categorized the candidates into
nodules and non-nodules. The rules were regarding the eccentricity (2D), area (2D),
dimension of bounding box (3D), maximum circularity (3D) and relation of object location
and object size (3D). After rule based classification, LDA classifier was used to further
reduce the number of FP objects. The most discriminating features were determined to be the
volume, surface area, average and standard deviation of gray values and the maximum values
of the cross sectional area, perimeter, circularity, major and minor axes, and eccentricity. The
LDA was designed using a leave-one-case-out training and test resampling scheme. Outcome
of applying only the LDA classification on a dataset of 34 patients with 63 true lung nodules
was 84% sensitivity with 5.48 FP objects per slice. When the rule based classification was
also used, the FP rate decreased to 1.74 objects per slice at the same sensitivity. This revealed
the effectiveness of the rule based stage in the FP reduction scheme. However it should be

noted that the rules were designed based on knowledge gained from radiologists such as the
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anatomical characteristics and morphological features of lung nodules (size, location and
shape). The size of nodules in the dataset of [18] ranged between 2 to 25 mm with the
average size of 8.89 mm (diameter).

In another work [20], after ROI detection by means of applying the quantized
convergence index (QCI) filter on CT image pixels, Fisher line discriminant analysis was
used to categorize the candidates into groups of true positives and false positives. Five
features were involved which consisted of effective diameter, elongatedness, goodness-of-fit
with an ellipse, target contrast-to-noise ratio, and perimetrical gradient convergence. The
Fisher line discriminant analysis of the five feature quantities generated the final binary
decision of the scheme, i.e., either 0 (“no nodule”) or 1 (“nodule”). The coefficients for the
discriminant function were obtained using the datasets used in a study by Matsumoto et al.
(personal communications, June 2003), which contained 50 nodules as defined by the
consensus of three radiologists. The threshold value for the discriminant function was set
such that the scheme had a nodule detection sensitivity of 80% for the above dataset. The
suggested CAD system identified 81 loci of potential nodules consisting of 42 “true nodules”
and 39 “false nodules” in five clinical CT datasets (four cases) ranging from 2.5 mm to 12
mm in size. The 81 potential nodules were then evaluated in 2 dimensions by four
radiologists. Mixture distribution analysis of the results of the four radiologists demonstrated
a relative proportion agreement of 0.84. The kappa statistic was used to compare the
agreement of the computational scheme with the results of the four radiologists. Kappa
statistic is an index which compares the agreement against that which might be expected by
chance. Kappa can be thought of as the chance-corrected proportional agreement, and
possible values range from +1 (perfect agreement) via 0 (no agreement above that expected
by chance) to -1 (complete disagreement).The kappa value of 0.65 calculated in [10] was
shown to be significantly different from chance.

In addition to the purpose of FP reduction, discriminant analysis has been employed
with the goal of classifying benign and malignant nodules. For instance the work by Shah et
al. [21], investigates the utility of a computer-aided diagnosis in the task of differentiating
malignant nodules from benign nodules based on single thin-section computed tomography
image data. For each ROI contour/outline of the solid portion of the nodule, image analysis

techniques were used in order to extract mathematical descriptors of attenuation, size, shape,
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and texture. This was followed by feature selection by a stepwise model selection search
[22]. The selected features were then input into four different classifiers. These classifiers
included linear discriminant analysis, quadratic discriminant, logistic regression, and rpart,
which closel'y followed the CART algorithm [23]. Receiver operator characteristic (ROC)
analysis revealed that the best performing classifier when tested using a leave-one-out
method was the linear discriminant analysis classifier with an A, (area under ROC curve) of
0.92. There were a total of 33 benign and 48 malignant true nodules in the dataset. Most of
these nodules had diameter bigger than 12.5 mm and there was only one nodule with
diameter less than 7.5 mm in the dataset. This is a drawback of this system, as it does not

include any small nodules.
2.3.3 Artificial Neural Networks

An Artificial Neural Network (ANN) is an information processing paradigm that is
inspired by the way biological nervous systems, such as the brain, process information. The
key element of this paradigm is the novel structure of the information processing system. It is
composed of a large number of highly interconnected processing elements (neurons) working
in unison to solve specific problems [24]. The ability of neural networks to accumulate
knowledge about objects and processes using learning algorithms makes their application in
pattern recognition very promising and attractive [25]. Various kinds of ANNs have been
developed for a variety of applications. Reviewing the literature reveals that a few groups
challenged the problem of lung nodule FP reduction through application of artificial neural
networks, e.g., [26-29]. ‘

An early attempt for lung nodule detection and FP reduction through the use of ANN
was made in [26]. Two level artificial neural networks were utilized for computer-aided
diagnosis of lung nodules in chest radiographs. First ANN level was for detecting suspicious
regions within the lung (ROI detection). Second level of ANN was intended for FP reduction.
After ROI detection, each suspected nodule area was transferred to a curvature peak space
and then introduced to the second ANN for classification. The ANN composed of multilayer
perceptron structure with hidden layers. The system was tested by a series of simulated and

real nodules and provided results of 89%-96% sensitivity and 5-7 FPs/image, depending on
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the size of the nodules. Size of 50 real true nodu’les in the database ranged between 8 mm and
20.mm, for which the CAD provided 94% sensitivity and 5 FP/image. No result was reported
for small real nodules.

A neural fuzzy model was designed in [27] to extract suitable diagnosis rules and
classify true nodules from false candidates in CT images. Three features (average brightness,
size of area and circularity) were input to a multilayered neural network system. The model
suggested in [27] was organized layer by layer including input layer, rule inference layer, and
defuzzification layer. The learning mechanism and high computational power of neural
networks were brought into fuzzy inference system. The back-propagation algorithm was
used as a learning tool in that fuzzy inference system. That model can revise the membership
function of each feature and the corresponding weights of defuzzification by itself. The
system was applied to 29 clinical cases containing 393 physician confirmed nodules and
resulted in 89.3% sensitivity and 0.3 FP/image. Although the result numbers seem promising,
there are two downsides associated with that system. The threshold used for differentiating
between nodules and non-nodules (false positives) in the defuzzification layer is a fixed
number. There is no guarantee that this number will perform as efficiently for other test
datasets as it did for the original dataset used to achieve the experimental results. The other
disadvantage is that the size of nodules that the CAD system can detect is between 1 cm and
5 cm in diameter within lung field. This conveys the fact that the suggested performance of
CAD system corresponds to only when big nodules are present in the dataset.

In [28], Suzuki et al. used massive training artificial neural network (MTANN) for
reduction of false positives in computerized detection of lung nodules in low-dose CT
images. The MTANN consisted of a modified multilayer ANN and is trained by a large
number of subregions extracted from input images together with a teacher image containing
the distribution for the “likelihood of being nodule”. In that method, the original image
including a nodule or non-nodule was divided pixel by pixel into a large number of
overlapping subregions. All pixel values in each of the subregions were entered as input to
the MTANN, whereas a pixel value of each single pixel from the teacher image was used as
the teacher value. In order to eliminate various types of non-nodules, the capability of each
MTANN was extended and a multiple MTANN was developed. Each MTANN acted as an

expert for distinction between nodules and a specific type of non-nodule. The output of each
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MTANN was integrated by the logical AND operation. The discussed structure was applied
both with and without the presence of a series of rule based and linear discriminant classifiers
in the FP reduction system. The results are summarized in Table 2.1. It can be seen that in
terms of FP/section, best result was achieved when all three stages (rule based, LDA and
MTANN) were employed. Yet the FP rate was not similarly low when only the neural
network based component (MTANN) was used. Nodule size in [28] ranged from 4 mm to 27
mm. Independent nodules were used for training an testing of the LDA stage and the mean
diameter of the 50 nodules used for training was 12.7 + 6.1 mm while the mean diameter of

the 71 nodules in the test set was 13.5 + 4.7 mm.

Stages of FP reduction Sensitivity | FP/slice
Rule based + LDA + MTANN 80.3% 0.18
Rule based + LDA 81.7% 0.98
MTANN 80% 1.85

Table 2.1: Sensitivity and FP/slice results acquired in [28]

Recently authors of [28] applied a similar method to chest radiographs rather than
low-dose CT [29]. They challenged the issue that chest radiograph is a projection image
whose characteristics differ from those of an axial image such as that acquired by CT (e.g., a
nodule can overlap with ribs in a chest radiograph, whereas a nodule and ribs are separated in
a CT image). A couple of preprocessing steps such as background trend correction and
contrast normalization were added to the system discussed in [28]. They finally obtained an
overall sensitivity of 81.3% and 1.4 false positives per image. The dataset contained 91

solitary pulmonary nodules and the size of nodules ranged from 8.9 mm to 29.1 mm.
2.3.4 Other Mathematical/Statistical Methods
In addition to the main categories of FP reduction techniques mentioned in earlier

sections, examples of other mathematical/statistical methods can be found here and there in

the literature. The following will point out a few of those methods.
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A computer-based algorithm was suggeéted in [30] that combined traditional image-
processing techniques with rigorous pattern-recognition and receiver-operator characteristic
curve analyses. The goal was to select an appropriate, but adjustable, sensitivity/FP operating
point. For false positive reduction, the classifier module used a multi-feature quadratic
classifier based on Eigen value and gray-level analyses. The following features were used:

e The ratio of minimum and maximum Eigen values of the covariance matrix of the
pixels making up each candidate nodule
e The maximum Eigen value of the covariance matrix

e The average gray value of the pixels in the candidate nodule

The Eigen value features were used to distinguish (and eliminate) from true nodules
any long, thin structures more indicative of bronchial false positives. The average gray level
feature was used to remove false positives that were either brighter or darker than typical
nodules. The entire set of candidate nodules emerging from the detection module was divided
into true and false classes. Each class was modeled as a multivariate Gaussian distribution.
Then, using the probability density function of those multivariate Gaussian distributions, the
log likelihood ratio (LLR) for every detection was found. A threshold was then applied to the
LLR values to determine which nodules should be rejected as false positives, creating a
quadratic decision boundary in the multi-feature space. An optimal value for LLR could then
be selected, using receiver-operator characteristic (ROC) analysis. A total of 12 three
dimensional image sets of lung CT images were examined in this study. An experienced
chest radiologist identified 145 nodules by examining all slices of all images. The nodule
sizes expressed as the radii of equivalent spheres ranged between 4.43 mm and 18.02 mm. At
a sensitivity of about 90% a corresponding FP rate of 2 false positives per CT slice was
obtained. The authors of [30] claimed that the quadratic Bayesian cIassiﬁer employed in their
technique could more accurately determine which features are important. They also believed
that due to the fact that their technique used far fewer features than other algorithms, it has a
greater likelihood of being generalizable to a larger dataset [30].

In a work by Dehmeshki er al. [31], after morphology based techniques for ROI
detection, 12 features are extracted and selected. Based on those features, the dataset is

divided into two groups of nodules and non-nodules. Then for purpose of accurate
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classification (FP reduction) a sampling mechanism was used to overcome the imbalanced
data problem by reducing the non-nodule samples without compromising the classification
ability. After that, a support vector machine (SVM) was trained for nodule classification. In
the sampling stage, k-means clustering was used to group all non-nodule samples into a
number of clusters. Then a Gaussian mixture model was used to improve the cluster
distribution for a more accurate clustering performance. The support vector machine
classifier constructed a hyperplane as the decision surface in such a way that the margin
between two classes was maximized. The dataset used in that research contained 85 solid
nodules with maximum intensity higher than -650 HU in 47 CT scans, detected by at least
one radiologist. No information about the size of nodules was expressed. According to [31],
no true nodule was missed in the midst of data classification, however since 4 large true
nodules were missed by the ROI detection step, the average sensitivity of overall system was
about 95% with 39.83 FP/scan or 0.27 FP/slice. The article asserted that the SVM has
superiority over most other classifiers including neural networks because while NN only find
a local solution to the problem of maximizing the margin between two classes, SVM finds a
unique solution.

Finally in [32], logistic regression model and linear combination of Gaussians (LCG)
with positive and negative components were used to eliminate false positive nodules. After
detecting potential lung nodules using deformable 2D and 3D templates (a combination of
cross-correlation template matching and genetic optimization algorithm), the post-
classification of the candidate nodules was performed with the following three textural and
geometric features of each detected nodule: (a) radial non-uniformity of its borders, (b) mean
gray level over the 3D or 2D nodular template; and (c) the 10%-tile gray level for the
marginal gray level distribution over the 3D or 2D nodular template. To distinguish between
the false positive nodules (FPNs) and true positive nodules (TPNs), a supervised Bayesian
classifier was used on a training set of false and true nodules. The three features (a)-(c) were
used to classify the FPNs in the lungs while only the last two features were applied to the
lung wall nodules. The density estimation required in the Bayes classifier was performed, for
each feature, using logistic regression model and linear combination of Gaussians (LCG)
with positive and negative components. The technique was applied to a dataset of 200

subjects, which contained a total of 30 true nodules and yielded an overall correct detection
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rate of 82.3% with 9.2% FP rate. A major step that can improve the system of [32] is

selection of features that distinguish between small lung nodules and normal objects.
2.4 Summary

In the previous sections of this chapter, the schemes in the scientific literature for
computer-aided reduction of lung nodule false positive detections were categorized into four
major categories: (a) rule based, (b) linear discriminant analysis, (a) artificial neural
networks, (d) other mathematical/statistical methods. Examples of each category were also
discussed.

There are several issues that make the comparison of different FP reduction methods
difficult. Among the primary reasons is that the number of patients used in each study is
different with others. Also the scans are acquired by various CT scanners, thus having
different thickness and resolution. The number of true nodules is another factor of
discrepancy among the studies. Level of experience and number of radiologists who provided
the truth sets for each dataset is of course variable. A dataset and performance summary of
the methods discussed in previous sections of this chapter is shown in Table 2.2. As it is
evident in the table, nodule size range in various studies is dissimilar. All this has obstructed
the formation of a standard reference, based on which, performance of different lung nodule

CAD systems can be compared.
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No. Research Year Nodule size range Sensitivity FP
1 Kanazawa et al. [10] 1998 >4mm 90% 8.6 FP/case
2 "Zhao et al. [11] 2003 2mm-7mm 75% 9/case
3 Goo et al. [13] 2003 > 5Smm 65% (8 +5.2)/case
4 Dajnowiec et al. [14] 2005 >2.1 mm 80% 3/slice
5 Armato et al. [15] 1999 3.1mm-27.8mm 70% 3/slice
6 Armato et al. [16] 2001 3mm-25mm 70% 1.5/slice
7 Armato et al. [17] 2005 3mm-25mm 70% 1.6/slice
8 Gurcan et al. [18] 2002 2mm-25mm 84% 1.74/slice
9 Kung et al. [20] 2004 2.5mm-12mm 80% 9.75/case
10 Penedo et al. [26] 1998 8mm-20mm 94% S/slice
11 Lin et al. [27] 2002 lcm-5cm 89.3% 0.3/slice
12 Suzuki et al. [28] 2003 4mm-27mm 80% 1.85/slice
13 Suzuki et al. [29] 2005 8.9mm-29.1mm 81.3% 1.4/slice
14 Sivaramakrishna et al. [30] 2002 4.43mm-18.02mm 90% 2/slice
15 Dehmeshki et al. [31] 2004 <30mm 95% 0.27/slice
16 Farag et al. [32] 2004 >12mm 82.3% 0.92/slice

Table 2.2: Dataset and performance summary of several lung nodule CAD systems in the literature
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3 Detection of Regions of Interest
3.1 Overview

The main focus of this chapter is to discuss a computerized method for spotting
suspicious regions on CT images of lung. Suspicious regions or regions of interest (ROI), as
they are usually referred to in the literature, are those locations within the lung volume that
can be signs of lung cancer or some kind of pulmonary disease. In the case of current
research lung nodules constitute the ROI. Of course, not all candidates marked up with the
computerized detection system are true nodules and not all true nodules are necessarily
malignant.

As for every comprehensive ROI detection approach, the current method also
involves the three main stages of:

e Extraction of lungs
e Detection of potential nodule candidates within the lungs
e Removing false positive detections

Lungs are extracted using a 3D segmentation algorithm which includes optimal
thresholding and region growing. That method is explained in detail in [12]. The present
thesis focuses on the second and third steps of lung nodule detection process: (a)
Identification of potential nodule candidates within the lungs, and (b) false positive

reduction.
3.2 Identification of Potential Nodule Candidates within the Lungs

Figure 3.1 depicts the main stages of the proposed nodule detection algorithm. First,
through the use of contrast enhancement and histogram analysis, the system extracts some
parts of the lungs, which fall in nodule range in terms of intensity. Then by applying a series
of shape, size and intensity analysis techniques, the objects with highest chance of being

nodule are sorted out of the initial candidates.
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Figure 3.1: Block diagram of the proposed lung nodule detection system

3.2.1 Contrast Enhancement

CT scans are acquired with different devices and doses. Hence, CT images do not
look visually similar in terms of contrast. A CT image with poor contrast may lead into loss
of useful information. As the whole idea of the nodule detection process is to differentiate
between nodule and non-nodule objects, it is therefore important to emphasize those regions
of lung that may carry nodule information. A primary step to have those regions stand out is
to enhance the contrast of CT image.

In order to enhance the contrast quality, every 2D CT image goes through a histogram
equalization process. This process enhances the contrast of image by transforming the values
in the intensity image so that the histogram of the output image approximately matches a

specified histogram. The specified histogram is calculated as the flat histogram H:

H = ONES X prod (size (A))/n; 3.1)
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where A is the 2D array of digital image to be ;:ontrast enhanced. n is the number of discrete
gray levels in the transformed (contrast enhanced) image. The default value used for n is 64.
ONES is a vector of all 1s with dimension 1xn. The operator prod (...) multiplies the terms
inside the brackets by each other. In this case the multiplier and multiplicand are the

dimensions of the original image A. The histogram equalization algorithm chooses a

grayscale transformation T to minimize ]C' )~ (kj . ¢p is the cumulative histogram of A;
¢ is the cumulative sum of H for all intensities k. This minimization is subject to the
constraints that 7 must be monotonic and ¢; (7T (a)) cannot overshoot co (a) by more than half
the distance between the histogram counts at a. The following transformation is used to map

the gray levels to their new values [33].
b =T(a), such that:

b= [Z N j:l X (Maximum intensity level) / (Number of pixels) (3.2)

j=0

The summation inside square brackets indicates the number of pixels having the intensity
below the intensity level a or equal to it. The numerator of the second term of multiplication
is the maximum intensity level that a pixel can get.

Figure 3.2(a) shows two instances, where the true nodules are indistinguishable due to
low contrast of the CT image. In such cases, it is difficult both for naked eye and for CAD
system to puil out the nodule candidate from the surrounding lung parenchyma. In figure
3.2(b), the same two images as 3.2(a) are demonstrated after contrast enhancement. The
nodules appear remarkably brighter in this version and a perceptible difference between the

intensity of nodule and its surroundings can be observed.
3.2.2 Histogram Analysis

A labeled example of lung CT image is shown in figure 3.3. From the ROI detection
standpoint, we are concerned about the inner lung and lung wall regions. The gray level
intensity of these regions can be categorized into two main divisions of (a) lung parenchyma,
and (b) nodules, blood vessels and bronchial wall [11]. Based on this a priori knowledge,

histogram of the contrast enhanced lung image is automatically divided into two sections.
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Through this step, the elements of image are binned into two equally spaced containers and

the number of elements in each container along with the location of each bin center are

outputted for the image.

(b)

Figure 3.2: Effect of contrast enhancement on CT images
(a) Instances of lung nodules with very low contrast. (b) The same images after contrast enhancement. The
nodules are much more distinguishable in (b).
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Figure 3.4 illustrates a lung image and its corresponding two bin histogram. It can be
seen that most of the pixels fall in the first bin, admitting what can also be observed by eye;
i.e.; darker pixels (corresponding to lung parenchyma) are the majority and brighter pixels
(corresponding to vessels and nodules) are the minority. Location of each bin center is in fact

the mid intensity value for that bin. Center of the second bin is chosen as the threshold value

for each image.

sstium
ruscle
%33 rs

Figure 3.3: A labeled CT scan of lung

Number of pixels

Figure 3.4: Segmented lungs from a sample CT slice and gray level histogram of lungs after the contrast
enhancement step
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3.2.3 Image Thresholding and Translation

Once the threshold value is determined, the slice is thresholded with that value. The
result is a binary (black and white) image, where pixels with intensity greater than the
threshold appear in white and the rest appear in black. Thus, in addition to nodules which
may be present in the slice, all other objects with intensities in the same range as nodules also
show up white in the thresholded image. Those objects may include branching in-plane
vessels, cross section of vertical vessels and airways, mediastinum and other non-nodule

elements. An example can be seen in figure 3.5.

Figure 3.5: Lungs after thresholding
The region enclosed inside the circle in the left image is a nodule. In the binary image of right, the nodule and
other objects with intensity in the same range as the nodule appear in white.

As an initial step to eliminate some of the unwanted objects, the thresholded image is
shifted one pixel to left and one pixel to right and then the resulting translated images are
ANDed together. The premise behind this task is to remove any object which is less than two
pixels thick and more importantly eliminate the lung boundary. The overall shift is chosen
two pixels because in this study we are only looking for nodules greater than 3 mm in
diameter. The pixel spacing in digital CT images is usually equal or less than one, i.e.,
distance between two adjacent pixels is either 1 mm or a fraction of 1 mm. This is true for

both x and y axes, as the CT images are isotropic. Hence two pixels would be equal to or less
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than 2 mm, and therefore a nodule with 3 mm ;iiarneter will not be completely removed due
to the translation. Some investigators maintain that nodules smaller than 5 mm may be of
limited clinical importance, while others contend that since the benefits of detecting small
lung cancers are presently unknown, to exclude from consideration nodules in the 1-2 mm
size range may limit the relevance of the database [2]. The 3 mm inclusion criterion in
current research is selected based on the Lung Image Database Consortium (LIDC) standard,
which strikes a compromise between the mentioned views and also takes into consideration
the practical issue that all lesions identified as nodules in the database will require effort to
define spatial location and extent and to follow through subsequent examinations [2].

The simple translation step downsizes the number of objects in the binary image.
Figure 3.6 depicts an example. 3.6(a) is the binary image after thresholding and 3.6(b) is the
result of logical AND of left-translated and right-translated versions of that image. Figures
3.6(c) and 3.6(d) magnify a small region of slice that is removed through the translation and
AND process. |

29




@ (®

)

Figure 3.6: Effect of image translation
(a) Binary image of lungs after thresholding. (b) Image in (a) after translation and AND process. (c) and @A
portion of (a) and (b) magnified respectively. It is evident that as a result of the translation stage, many pixels on
lung border in (c) do not exist in (d). Also small objects are shrunk to isolated pixels (arrows).

3.2.4 Morphological Operations

A series of morphological operations are utilized for further separating the connected

objects and removing objects with low chance of being nodule. However before starting the
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morphological techniques, objects with size lés;s than 6 mm diameter circle are sought and
copied in another 2D array. This is done to prevent losing small objects in the midst of
mdfphological operations which bwill follow. The subsequent sections will elucidate this
issue.

First the boundary of each object is subtracted from it, leaving the interior pixels of
objects on. Object boundary is found by setting a pixel to 0 if all its 4-connected neighbors
are 1, thus leaving only the boundary pixels on. This boundary removal step is functional for
connectivity purging, where two or more objects are tangentially connected to each other.
This is crucial for detaching nodule candidates that are attached to another object, mainly the
lung wall or the bronchial tree. Figure 3.7 presents several examples of juxtapleural nodules
(nodules connected to lung wall) and nodules attached to a lung interior object. The effect of
boundary removal step is also shown for each case. Candidate size will of course be reduced
after the boundary elimination step, thus bringing up the chance of small entities getting
eliminated. However this is compensated by inserting the small objects retained earlier.

As a result of non-ideal lung segmentation or over-cautious segmentation, sometimes
soft tissue containing the cross section of airways (trachea) or parts of the bronchial tube also
appear within the lung region. Those cases are automatically diagnosed by testing for the
Euler number. The Euler number is a scalar whose value is the total number of objects in the
image minus the total number of holes in those objects and is computed by considering
patterns of convexity and conCavity in local 2-by-2 neighborhoods [34]. In the present
research, each object that has Euler number less than 1 and greater than -4 is removeci‘ (figure
3.8). The -4 limit is set to prevent elimination of cases where lung parenchyma appears as a
single object with many holes at places of abrupt intensity difference.

Another group of lung nodules that are difficult to handle by CAD —and are therefore
often missed- are those nodules that attach to vessels or elongated traces of soft tissue. To
better perceive such nodules, lengthy objects are broken into pieces. Maximum end to end
distance of object along each dimension (x axis and y axis) is calculated. This is equivalent to

finding the dimensions of the smallest rectangle that contains the region occupied by the

31



Figure 3.7: Examples showing effectiveness of the object boundary removal step
Each section from left to right shows original CT, after thresholding and after boundary elimination
respectively; (a) Wall nodule. (b) Nodule trapped between wall and thick vessels. (c) Two interior nodules
attached to each other.
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object. For each dimension, if the width of the o;t)jects is greater than 3 cm, i.e., the maximum
size criterion for lung nodule set by the LIDC [2], the object is split every 2 cm along that
dimension. Figure 3.9 demonstrates this process. Applying the latter step has two advantages.
The central advantage, as mentioned earlier, is that it detaches the nodules from long non-
nodule objects. Secondly, it breaks up large non-nodule components that have round opaque
shape similar to nodule morphology. Parts of the mediastinum or bronchus that are included
in the lung region can often look like this. Such objects remain unaffected through the prior

filtering steps.

Figure 3.8: Using Euler number for filtering nodules from non-nodule objects
Left to right, top to bottom: intensity change within the bronchial vessels or airway cross-sections appear as
holes in the binary image before testing for Euler number. Objects with such interior holes are removed after the
Euler number test.
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Figure 3.9: Effect of breaking long objects into pieces
(a) Original CT slice. (b) Segmented lungs; a nodule is located inside trace of soft tissue in left lung (arrow).{c)
Lungs before the splitting step. Nodule is trapped in the arc shape tissue. If not broken into pieces, this large
irregular shape will be eliminated in subsequent steps and consequently the nodule will be missed. (d) Lungs
after the splitting step.

Figure continued on next page
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Figure 3.9 (Continued from last page): (¢) Image in (d) magnified about where the nodule is located.
The piece of tissue containing the nodule is now separated from the rest of the irregular shape.

3.2.5 Shape and Size Analyses

At this stage, the objects are filtered based on their area and axis ratio. Objects with
area smaller than a 3 mm diameter circle (the minimum effective diameter for nodule
inclusion set by LIDC [2]) are confiscated. The axis ratio is defined as candidate’s major axis
length to its minor axis length within its tight bounding box. The idea comes from [14], in
which tight fitted bounding box is obtained by rotating the object based on its orientation
using bi-cubic interpolation. With this modified bounding box, an object could be at any
orientation and the box dimensions and compactness would be the same. The tight bounding
box contains a new rotated version of object in a way that the angle between x axis and the
major axis of the ellipse with same second moments as the object is zero. In the current work,
objects with axis ratio greater than 2 are set to zero. The shape and size analyses stage trims

down the entities which are too small or too long in order to be considered nodule.
3.2.6 Intensity Analysis

Last stages of the ROI extraction process are two intensity-based filtering steps. The

first step is intended to remove cross section of in-depth vessels. These objects appear in

35



round well-formed shapes, with very close size and morphology to that of small nodules.
Their main distinction from nodules is that they are very bright points with sharp intensity
disparity with their surroundings. Figure 3.10 shows several examples. When nodule
detection is. performed manually, radiologists ignore this type of false positives by

recognizing their very bright and sharp pointed appearance.

Figure 3.10: Density profile analysis for removing cross section of vertical vessels
Arrows point to cross section of in-depth vessels. They appear as bright round objects and have distinct
intensity difference with their surrounding lung parenchyma.

As no more shape or size filtering will be performed, the image is dilated with a disk
structuring element of radius 1 to attain information about gray level intensity of neighboring
pixels of each object. Then the intensity of points on the border of the dilated image at 0°,
90°, 180° and 270° are compared with the intensity of object’s centroid. For the object to

remain un-removed, all of the next four inequalities must be satisfied:

I. - Ipo<220 HU (3.3)
I - Igpo <220 HU 34)
I, - I180- <220 HU (3.5)
I - I;70-< 220 HU (3.6)

Parameter / represents the intensity of pixel at the location indicated in the subscript.

Subscript ¢ corresponds to centroid. The value 220 HU is selected empirically based on the
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minimum observable intensity change in vessel cross-section objects. Figure 3.11(a)-(d)
magnifies a sample vessel cross-section and its density profile along its vertical and
hofizontal axes. The density profiles are sharp and the intensity peak is concentrated at the
centroid. This is against the more uniform intensity distribution of a true nodule with similar

shape and size, as can be witnessed in 3.11(e)-(h).

© @

Figure 3.11: Density profile of nodule and non-nodule objects along their horizontal and vertical axes
(a) Cross-section of a vertical in-depth vessel. (b) Object in (a) zoomed in. (c) Density profile of vessel cross
section along its horizontal axis. (d) Density profile of vessel cross section along its vertical axis.
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Figure 3.11 (continued from last page): () A true nodule. (f) Nodule in (&) zoomed in. {(g) Density
profile of nodule along its horizontal axis. (h) Density profile of nodule along its vertical axis.

The last step is removing objects with gray level intensity too low to be considered

potential nodules. All objects with mean intensity lower than value T expressed in (3.7) are

removed.
T = min (450 HU, t) 3.7

If the intensity histogram of original CT image is divided into four equal sections, ¢ is

the upper boundary of the first quarter. In other words ¢ is equivalent to 25% of the
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maximum intensity range of CT image. The _othér component inside brackets of equality
(3.7), 450 HU, originates from the fact that in the CT image data, air will appear with a mean
intéhsity of approximately -1000 Hounsfield units (HU), most lung tissue will be in the range
of -910 HU to -500 HU, while’ the chest wall, blood, and bone will be much more dense (well
above -500 HU) [35]. With this in mind and with the assumption that in the current research
all intensities have been shifted by +1024 HU for rescaling purpose, most lung tissue will be
in the approximate range of 0 HU to +500 HU. Hence there is minor chance that candidates
with mean intensity less than 500 HU are of nodule nature. This cutoff intensity is lowered
by another 50 HU to be even more cautious about possible nodules. This results in the value
450 HU. Figure 3.12 illustrates three low intensity false positive objects that continued to
remain after all the preceding filtering stages. These objects are caught by the very last step

discussed and consequently removed.

Figure 3.12: Effect of filtering based on object’s mean intensity
(Left) Circles enclose low intensity non-nodule objects. (Right) These objects continue to remain until the very
last filtering step, through which they are removed.
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4 Enhanced False Positive Reduction Scheme

4.1 System Overview

The contribution presented in this chapter is focused on deign and development of a
novel hybrid learning method for reducing the number of false positives in results acquired
by an automatic lung nodule detection system in CT images.

In spite of the filtering steps performed in the ROI detection stage, still many false
positives exist in the final ROISs. It is thus imperative to design and employ a more enhanced
means of FP reduction. In fact, effective FP reduction is an universal requirement for all
CAD systems. This reason motivated the author to develop the following hybrid learning FP
reduction scheme.

The hybrid scheme was originally developed in order to trim down the number of
candidates picked out as potential nodules by an existing rule-based CAD system [12].
However use of the proposed FP reduction system is not limited to the specific system of
[12]. As will be discussed in the results chapter, the enhanced learning FP reduction scheme
was also applied to results acquired by the ROI detection system introduced in chapter 3 of

this thesis and proved to be rewarding.
4.2 Hybrid Learning FP Reduction Scheme

Block diagram of the hybrid learning FP reduction algorithm is depicted in figure 4.1.
The algorithm consists of three main modules: features extraction, fuzzy c-means clustering
and iterative linear discriminant analysis. The proposed scheme is hybrid in the sense that
combines the discrimination power of fuzzy c-means clustering with classification ability of
a modified version of linear discriminant analysis to achieve false positive reduction.

The learning methods classify sample data by extracting and integrating information
from samples. That information is called features and is acquired in the first module of
system. The second module, fuzzy c-means clustering (unsupervised learning), makes an
approximate decision about the case being nodule free or containing multiple nodules. The

third unit is what has been exclusively designed for this research and is named adaptive
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iterative LDA (supervised learning). This step is used for further reduction of FPs when the
fuzzy c-means clustering unit has determined the existence of multiple nodules in a given

case.

A\ 4
A 4

Potential _,/  Feature Fuzzy c-means Iterative Detection

Nodule extraction clustering LDA of FPs _~
candidate

A 4
Distinguish Iterative
healthy cases process

Figure 4.1: Block diagram of the hybrid FP reduction scheme

One might wonder why two learning algorithms are used -instead of one- in the
design of the proposed enhanced FP reduction scheme. Or, with the presence of a supervised
learning module such as the iterative LDA, benefit of incorporating an unsupervised learning
method like fuzzy c-means clustering, which attempts to learn something of value from
unlabeled samples may seem of little practicality. The answer is that in early stages of an
investigation it may be valuable to perform exploratory data analysis and thereby gain some
insight into the nature or structure of the data. The discovery of distinct subclasses —clusters
or groups of patterns whose members are most similar to each other than they are to other
patterns- or of major departures from expected characteristics may suggest significant
alterations in the approach for designing the classifier [36]. Realization of this fact in current
research is that the nodule-free or almost nodule-free cases are recognized in the
unsupervised learning module. The supervised learning modulé, which is more data and time
consuming is applied only when there is need for more cautious classification. This will be
further clarified when the three modules of the enhanced FP reduction scheme will be

explained in the following sections.
4.2.1 Feature Extraction

The primary stage of work is selection and extraction of appropriate features for

further classification. For each potential candidate, total of nine features are extracted. Two
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gray-level related, four morphological and three contextual features are calculated for each
candidate. Table 4.1 lists the features and the category they belong to. As it is evident from
the table, the gray level rated features contain information about the intensity value of pixels
within and afound the nodule candidate. The morphological features include information
about the shape and size of candidate and contextual features provide knowledge about the
relative location of candidate within the lung context. The nine features are extracted and
used in the subsequent classification modules of the hybrid approach. Four of these features
(mean intensity of candidate interior, mean intensity of candidate surrounding, volume and
candidate’s position within lung context) have been designed and utilized by the author
specifically for the current research, while the rest of features were inspired by previous
works in this field. Each feature will be further explained in the following. The features are
3D except mentioned otherwise. By 3D it is meant that 3D connected components with 26
point connectivity are counted as one object. In other words for a given pixel, any other pixel

contained within a 3x3 cube centered at the given pixel is connected.

Gray level related Morphological Contextual

Mean intensity of Axis Ratio Perimeter

candidate interior

Mean intensity of Compactness Vertical Ratio

candidate surrounding

- Area Position of nodule in lung context

- Volume -

Table 4.1: Categorization of nine features extracted for each potential nodule candidate

Mean intensity of candidate interior: This feature relates to the average intensity of
nodule candidate’s interior pixels. To obtain this feature, the mean gray level value of pixels
that fall within the object’s tight bounding box is calculated. The reader is reminded that the
tight bounding box is obtained by rotating the object based on its orientation using bi-cubic
interpolation [14].

Mean intensity of candidate surrounding: This feature relates to the average intensity

of nodule candidate’s surrounding pixels. It is calculated through applying an exclusive OR
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(XOR) operation on the tight bounding box sur;ounding the candidate and its dilated version.

The result of XOR is only non-zero where the tight bounding box and its dilated version do

not overlap, i.e., along the boundary of candidate. Figure 4.2 presents a visual example.
Figure 4.3 shows several nodule samples and their corresponding mean interior and

mean surrounding intensities extracted by the system.

&

@ (b) (©
Figure 4.2: Extracting the surrounding pixels of a nodule

(a) A sample nodule, which appears only in one slice. (b) Nodule in (a) dilated with a disk element of radius 2.
(c) Result of applying XOR operation on (a) and (b).
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Nodule Mean intensity Mean intensity
interior surrounding |
a 456.52 269
b 817.87 595
c 1019.20 642.36
d 900.86 555.26
e 713.04 486.13
f 453 313
g - left 682.69 350.77
g - right 586.78 357

(g)

Figure 4.3: Examples of a variety of lung nodules and their corresponding interior and surrounding
mean intensities

Axis Ratio (2D): This feature is calculated as the ratio of major axis length to minor
axis length of 3D candidate’s biggest cross section, within its tight bounding box. Figure
4.4(a) shows an example of a true nodule, while figure 4.4(b) shows a vessel. The
dimensions of nodule in part (a) are almost similar along both x and y axis, resulting in an

axis ratio of close to 1. On the other hand in part (b), the vessel’s major axis dimension



-

(along vertical axis) is quite longer than its minor axis (along horizontal ax1s) Hence the axis

ratlo for this case is large.

(b)

Figure 4.4: Axis ratio of a nodule and a non-nodule object
(a) Example of a well-formed round nodule with axis ratio close to 1. ) Example of long vessel with axis ratio
greater than 1.
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Area (2D): This feature relates to the area of nodule candidate’s biggest 2D cross
section. It is determined as the total number of pixels belonging to that region. This feature
does not provide any information regarding the shape of candidate. For example object in

figure 4.5(a) has the same area as the object in figure 4.5(b), but shape-wise they are clearly

dissimilar.

(®)

Figure 4.5: Nodule candidates and the area feature
Objects indicated in (a) and (b) have identical area, although their shapes are different.
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Compactness (2D): Feature compactness is calculated as the area of candidate’s
biggest cross section divided by the area of its tight bounding box. Figure 4.6 presents some

nodule candidates and the compactness values associated with them. It can be seen that the

largest compactness value relates to part (a), which illustrates the most opaque object of the

three.

Nodule Compactness
a 0.61
b 0.03
c 0.02

©

Figure 4.6: Some instances of nodule candidates and their compactness value
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Volume: Volume is a 3D feature and it is calculated by summing up the number of
pixels present in all cross sections of candidate and then multiplying this total by the unit
volume of a voxel. A voxel (VOlume piXEL) represents a quantity of 3D data just as a pixel
represents a point or cluster of points in 2D data [37]. Thus, the thickness of CT slices has a
direct impact on the amount of this feature. Figure 4.7 shows the histogram of candidate
volume —acquired by the current feature extraction system- for all those true nodules that

were detected by the rule based CAD system of [12].

Number of nodules

ulJ 50 1000 1500 2000 2500

Volome lmm’]

Figure 4.7: Histogram of nodule volume for all those true nodules that were detected by the rule based
CAD system of [12]

Perimeter: For each candidate, the perimeter pixels are defined as those pixels that
are new to the candidate after dilating it using a disc element of radius 2. The perimeter
feature is then described as the ratio of perimeter pixels that are outside of the lung volume to
those perimeter pixels which are internal to the lungs [12]. This feature quantifies the
strength of connection between each candidate and lung wall. Figure 4.8(a) shows interior
lung nodules with no attachment to lung wall, thus having a perimeter value of zero.
Example of a nodule strongly connected to lung wall can be observed in Figure 4.8(b). The

perimeter feature for the latter case is greater than zero.
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Figure 4.8: Nodule candidates and the perimeter feature
(a) Examples of interior nodules with perimeter feature equal to zero. (b) Example of wall nodule with
perimeter value greater than zero.

Vertical Ratio: This feature, which can be visualized as the 3D equivalent of axis
ratio, is the depth of nodule candidate less one slice divided by the longest length of all the
tight bounding boxes for each 2D cross section [12]. Of course this feature is nonzero for
those nodule candidates that are more than one slice thick. This feature can be helpful in
discriminating between long vertical vessels and the more spherical nodules. ‘

Position of candidate in lung context (2D): If centroid of the 3D candidate is located
on slice number n, the shortest distance between that centroid and centroid of lung cross
section, which also appears in slice n and encompasses the candidate is the position feature.
This feature indicates how far from the center of lung the potential nodule candidate is
located and is of importance for two main reasons: a) Based on experimental observations,
the majority of true nodules detected by the automated nodule detection system suggested in
previous chapter are located close to lung boundaries and far from the centroid of lung. b)
According to the expert radiologist, who assessed the scans for nodule verification, the
nodules which are situated close to the center of lungs (around the boundary of upper and
lower lobes) are more likely to be missed. The position feature is therefore an interesting
feature for both the purpose of classification and also for further nodule CAD research.

Figure 4.9 shows the histogram of candidate position feature for all those true nodules that
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were detected by the rule based CAD system of [12]. It can be seen that in agreement with
the point mentioned in reason (a) above, the greater population of true nodules is

accumulated around the higher distance values.

B % B 8 85 &

Number of nodules

Distance [mm]

Figure 4.9: Histogram of nodule position feature
Histogram of distance between centroid of nodule and centre of the lung cross section, which surrounds that
nodule for all those true nodules that were detected by the rule based CAD system of [12].

4.2.2 Fuzzy C-Means Clustering

Among the dataset being analyzed by the CAD system, there are cases that contain no
nodules. These cases are often the cause for large overall false positive per slice rate. Fuzzy
c-means clustering is exploited in the system with the aim of identifying such cases.

Fuzzy c-means (FCM) is a method of clustering which allows one piece of data to
belong to two or more clusters. This method (developed by Dunn in 1973 [38] and improved
by Bezdek in 1981 [39]) is frequently used in pattern recognition. Fuzzy c-means clustering
is an unsupervised leaning method and clusters sample data based on their given features by

assigning some graded or “fuzzy” cluster membership -to each sample. These memberships

are equivalent to probability p(s| .6 Where x is the j" of d-dimensional measured data,

o, represents cluster i and € is the parameter vector for the membership function. The fuzzy

c-means clustering algorithm seeks a minimum of a heuristic global cost function /~ as in

equation (4.1).
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where p( W xj,g) is the degree of membership of x;j in the cluster @; ,‘ b is a parameter

chosen to adjust the blending of different clusters, # is the cluster center for cluster i and I

is any norm expressing the similarity between any measured data and the center. It can be

shown that at the solution (i.e., the minimum of J) the cluster center to which the Sample

belongs and the probability of membership can bé calculated as shown in (4.2) and (4.3).

_ZLP@lx)? x, 4.2)
> P(@|x)r
o/ g,y
P(a)i l xj)= > (l/d,j)%"‘" and d;= "xj‘ﬂ,.lr 4.3)

In general, the J o criterion is minimized when the cluster centers “are near those
points that have high estimated probability of being in cluster j [36]. The fuzzy c-means

algorithm can be summarized in the following steps:

1. Initialize P=[p;] matrix, P”

2. At k-step: calculate the centers vectors y™=[ u ;] with P®
2P
= ——j=]
2P
=

3. Update P, p+1)
1

H;

Pji= 2
2 ""f —p,.|| "

r=1 "xj —lur

4. If (|| ™V - P™ ||< ¢) OR (the maximum number of iterations (Kas) is reached) then

STOP; otherwise return to step 2.
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Table 4.2 displays the selected parameter values while applying the fuzzy c-means
clustering in the current lung nodule false positive reduction research. These parameters were

introduced earlier in equations (4.1)-(4.3) and the algorithm summary above.

Symbol Description Value
X Sample j 2 features for each sample candidate: (1)
compactness and (2) area
c Number of clusters (i.e., nodule and 2
non-nodule)
n Number of sample data Variable for each case
P Initial fuzzy partition matrix A randomly generated cxn matrix.
b Exponent for the matrix P 2
Ko Maximum number of iterations 100
€ Minimum amount of improvement le-5

Table 4.2: Fuzzy c-means clustering parameters for the specific application of lung nodule FP reduction
in current research

For each sample candidate, features area and compactness are chosen to be used in
the fuzzy c-means clustering step. These features proved to be effective in terms of clustering
the sample candidates into two different groups of nodules and non-nodules. Based on these
features, each sample is given a membership grade. The values 0 and 1 indicate no
membership and full membership respectively. Grades between 0 and 1 indicate that the data
point has partial membership in a cluster. In order to find the best location for the clusters,
the algorithm updates itself by minimizing the cost function Js. (4.1) at each iteration. The
fuzzy c-means clhstering algorithm continues the clustering procedure until the results
converge, that is when the improvement of cost function between two consecutive iterations
is less than a specified minimum value or when the maximum number of iterations is
reached.

For each patient, if the number of objects clustered as nodule after convergence is
smaller than a threshold, that case is considered to be healthy or almost healthy. Hence,
except those few candidates clustered as nodules all the other objects, i.e., objects in the non-
nodule cluster, are considered false positives and discarded. The threshold is equal to 5% of

the total number of candidates in the case with least number of detected objects. This means
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that in worst case, which would be the case of patient with minimum number of detected
candidates, for the case to be counted nodule free, at least 95% of the samples should be
cluétered as non-nodule after fuzzy c-means clustering. Figure 4.10(a) depicts the result of
fuzzy c-means clustering on the two dimensional feature space of candidate area and
compactness, for a patient with no true nodules. Figure 4.10(b) on the other hand shows an
example of clustering result for a case with multiple nodules. As it is apparent from these
figures, the fuzzy c-means clustering does a good job of separating suspicious (potential true
nodule) samples from healthy ones. Those cases that do not satisfy the mentioned threshold
constraint are assumed to contain multiple nodules and are therefore forwarded to the next FP

reduction module for adaptive false positive analysis and amputation.
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Figure 4.10: Result of fuzzy c-means clustering based on candidate’s area and compactness
Circles represent members of non-nodule cluster and crosses represent members of nodule cluster. Bold
markings point out center of each cluster type. (a) Patient with no nodules. (b) Patient with multiple nodules.

4.2.3 Iterative Linear Discriminant Analysis

After the fuzzy clustering step, those cases that are designated to contain multiple
nodules are processed by a novel iterative linear discriminant approach.

In general, discriminant analysis (DA) is a supervised learning method that predicfs in
which group an individual belongs based on a pattern learnt from labeled training data and

prior probabilities for the groups. The DA combines (i.e., weighs) the features so that a single
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new composite variable, the discriminant function, is produced. Discriminant functions are

the uncorrelated linear combinations of the original features:

Z=WiX;+ WoXo + ... + WX; ; Xi = Vector containing feature i “4.4)
; Wi = Weights
Linear discriminant analysis (LDA) seeks a linear combination that has a maximal
ratio of the separation of the class means to the within-class variance. This can be expressed
in mathematical notations as follows.

For a labeled set of training vectors:

T =1 Y ) (5,90} X, € R, ye Y={1,2,...,C} (4.5)
The within-class Sw and between-class Sg scatter matrices are described as

Sw =25, (4.6)
yeY

Sa = 2|, — ), - ", “.7)
yeY

where S, = Z(x,. — 1;)(x; — ;)" and the total mean vector y and the class mean vectors Hy

ioEIy
are defined as:
1< 1
,U=;ZX'-, ﬂy =|I—Zx,.,er (4.8)
i=1 y iel,

L] is the number of samples labeled y.

The goal of LDA is to train the linear data projection

z= WTx, (49)

such that the class separability criterion

_ deUS,) 4.10
FW) deiS,) (4.10)
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is maximized [40].

~ In the current study, the proposed iterative LDA algorithm is adaptive in the sense
that it seeks the appropriate level of discrimination for each patient. Similar to the work done
by Armato et al. [16], the nature of our LDA is a leave-one-out-by-case scheme, in which
nodule candidates of all except one of the cases are used to train the classifier, which is then
utilized to classify the nodule candidates from the remaining case. The linear classifier is fed
by the 9 features discussed in section 4.2.1. The novelty of our approach however comes
from the fact that unlike previous studies which use fixed classification thresholds for
discriminant analysis of all candidates, the present approach updates its discrimination level
based on the information attained from previous iterations of LDA. Figure 4.11 depicts a
more detailed view of the iterative module. For all cases, the discriminant analysis begins
with assigning a prior probability of 95% for membership in nodule class and 5% for
membership in non-nodule class. This is a very cautious allocation, as we desire to retain as
many true positive detections as possible. At each iteration, the linear classifier classifies the
test candidates into nodule and non-nodule classes. If the total number of candidates in
nodule class at one iteration (e.g., iteration i in figure 4.11) is different from that of the
iteration before it (e.g., iteration i-1 in figure 4.11), and that difference is less than a cutoff
threshold (T, in figure 4.11), it is implied that the LDA with current membership
probabilities has not yet been able to detect many false positives. Therefore the membership
probabilities are altered accordingly, i.e., the prior probability for nodule class membership is
decreased by 5% while the prior probability for non-nodule class membership is increased by
5%. The LDA is applied on the candidates with these new values once again. In other words
the LDA starts affecting the test candidates with very low aggressiveness and it becomes
more and more aggressive as the number of iterations increases. The more aggressive LDA
acts, the greater number of candidates it classifies as false positives. This iterative process is
terminated when a big difference (cutoff threshold) is detected between size of nodule class
in two consecutive runs of LDA. At that point the system considers the groupings arrived at
iteration one before last to be the final classification result of the iterative LDA module. The
cutoff threshold is chosen to be 20% of the total number of candidates for the case with least
number of detected objects. This means that in the worst case, which would be the case with

least number of candidates, if more than one fifth or 20% of the total number of candidates is
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removed through an iteration of the iterative classification process, the process is halted at
that stage. Experiments showed that this is a reasonable threshold as it is not too small to
immediately stop the iterative process (under estimation of FPs), while it is not also too large

to allow for over detection of false positives.

(number of candidates classified as nodule at iteration i -1)
- (number of candidates classified as nodule at iteration i) < T2

A
Iterative LDA

(number of candidates classified as nodule at iteration i -1)
- (number of candidates classified as nodule at iteration i) > T2

\ 4

Except those candidates classified as
nodule, all other objects are considered
false positives

Figure 4.11: A closer look at the iterative linear discriminant analysis module
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5 Results

This chapter provides experimental results of the methodologies discussed in previous
two chapters. The dataset used for experiments is introduced in section 5.1. Results of the
discussed ROI detection system is presented in section 5.2. The results acquired by using the
hybrid learning FP reduction scheme is explained in section 5.3. Finally in section 5.4,

performance results are compared with some of the previous research found in the literature.
5.1 Dataset

Dataset composition may have a significant impact on the functionality of system.
Lack of an universal dataset to use as gold standard for testing various thoracic CAD
methods is still a significant pitfall that researchers have to face. Some researchers have
tested their detection approaches on simulated (synthetic) nodules. While this can be
considered as a good initial step for getting insight about system performance, it can never
replace the requisite for system performance assessment on real human nodules. The
biological intricacies and variations associated with clinical subjects are significant
challenges that need to be considered, resolved and refined by a CAD system.

Database of this research consists of 24 thoracic helical CT scans acquired from 24
different child patients in The Hospital for Sick Children, Toronto, Canada. 12 patients were
female and 12 were male and the mean age of patients at time of scan was 12 years. The CT
examinations were performed on a GE Medical Systems CT scanner and were acquired with
a protocol of 120mA to 160mA (mean 138mA), 120 kVp. Each 5 mm thick reconstructed CT
slice has an image matrix size of 512 x 512 pixels'. The database consists of total of 1190
slices, and the number of slices per scan ranges from 29 to 68 (average 50 slices per scan).

It has been tried to include a broad range of nodule size and distribution in the dataset
of this pediatric study. The dataset contains 154 metastatic true nodules, with 20 nodules
being smaller than a 4 mm diameter circle. Size of 10 nodules fall below the area of 3 mm

circle, which is assumed as the minimum nodule size criterion [2]. This criterion is smaller

! Images have been resized in the figures of this thesis for space limitation.
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than what has been used in some of the other studies [10], [27], [28], [30] and [32]. Nodule
population per scan ranges from 0 to 58 for different patients in the database (average 6.42
nodules per patient).

An experienced thoracic radiologist indicated the location of each nodule using a
computer interface. The radiologist marked up the location, which he believed to be a nodule

by a mouse click on each CT slice in which the nodule appeared.
5.2 ROI Detection Results

The 24 clinical subjects of this database were in fact three groups of patients, with CT
scans performed at various dates (Table 5.1, column 1). Group A and B with total of 18
patients were used for developing the ROI detection system. The system was later tested with
cases of group C. As will be presented soon in this chapter, the sensitivity and false positive
rate attained by utilizing the ROI detection system discussed in chapter 3 was compared
against the performance of a recéntly developed rule based CAD system [12] for each group
of patients.

Tables 5.1 to 5.3 demonstrate the results attained in different phases of the ROI
detection system discussed in chapter 3. The first three columns of each table show tag name
for each case, number of nodules per case, and total number of CT slices per case
respectively. The last four rows of every table, express the overall value of each performance
parameter for patients in group A, B, C and all three groups combined.

Columns four to seven of Table 5.1 relate to system performance at the_ end of the
morphological operations stage (refer to block diagram figure 3.1) and before any of the rule
based FP reduction phases are performed. It can be observed from Table 5.1 that while the
system achieves high sensitivity at this phase of work, it also detects a very large pool of
false positive candidates. This is quite expected, as the combination of histogram analysis,
thresholding and morphological operations specify many entities as potential nodule
candidates. This calls for further refinement of the designated candidates, which is
accomplished through the application of candidate size, shape and intensity analysis phases
as were described in sections 3.2.5 and 3.2.6. Numerical results of those phases can be

viewed in Tables 5.2 and 5.3.
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Without breaking big objects into pieces, 3 nodules would have been missed and also
many independent objects would have erroneously become connected, due to existence of

long objects, which linked the pieces three dimensionally.

# of # of
Case Tag nodules | slices # true detected Sensitivity # objects detected FPs/slice

Al 1 40 - 0 0 860 21.50
A2 0 67 0 N/A 1953 29.15
A3 34 57 27 79.41 1986 34.37
A4 1 50 1 100 1381 27.60
AS 1 61 0 0 1785 29.26
A6 13 40 10 76.92 1335 33.13
A7 0 37 0 N/A 1722 46.54
A8 1 53 1 100 2046 38.58
A9 8 59 6 75 1930 32.61
Al10 1 35 1 100 1056 30.14
B1 58 65 47 81.03 1910 28.66
B2 0 32 0 N/A 988 30.88
B3 13 61 10 76.92 2396 39.11
B4 1 46 1 100 2558 55.59
BS 0 51 0 N/A 917 17.98
B6 0 56 0 N/A 2026 36.18
B7 3 55 3 100 1177 21.35
B8 1 4 0 0 - 1574 35.77
C1 9 68 8 88.89 1377 20.13
C2 2 53 1 50 1800 33.94
C3 1 37 1 100 1453 39.24
C4 3 35 1 33.33 895 25.54
C5 0 59 0 N/A 1920 32.54
Cé6 3 29 3 100 1592 54.79
Set A 60 499 46 76.67 16054 32.08
SetB 76 410 61 80.26 13546 32.89
Set C 18 281 14 77.78 9037 32.11

A&B&C/| 154 | 1190 121 78.57 38637 32.37

Table 5.1: System performance at the end of the morphological operations stage
Data in this table is collected before any of the rule based filtering phases are performed. N/A stands for not
applicable.

Sensitivity and false positive results of the system after the size and shape filtering
phase are presented in Table 5.2. The total number of defected objects for each case and
consequently the overall number of detected objects drops significantly (87% reduction in
overall FP/slice rate compared to Table 5.1). Three Nodules are missed in the midst of this
phase and hence the sensitivity performance is decreased by approximately 2% (76.62%
versus 78.57%). The missed nodules did not satisfy the conditions set for area and axis ratio

explained in 3.2.5.
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# of # of
Case Tag nodules | slices # true detected Sensitivity # objects detected FPs/slice
Al 1 40 0 0 127 3.18
A2 0 67 0 N/A 209 3.12
A3 34 57 30 88.24 259 4.02
A4 1 50 0 0 119 2.38
AS 1 61 0 0 195 3.20
A6 13 40 9 69.23 178 4.23
A7 0 37 0 N/A 230 6.22
A8 1 53 1 100 212 3.98
A9 8 59 6 75 256 4.24
Al0 1 35 0 0 150 4.29
B1 58 65 48 82.76 487 6.75
B2 0 32 0 N/A 141 441
B3 13 61 9 69.23 337 5.38
B4 1 46 1 100 299 6.48
BS 0 51 0 N/A 105 2.06
B6 0 56 0 N/A 191 341
B7 3 55 2 66.67 170 3.05
B8 1 44 0 0 205 ' 4.66
C1 9 68 7 77.78 191 2.71
C2 2 53 0 0 201 3.79
C3 1 37 1 100 242 6.51
C4 3 35 1 33.33 138 391
C5 0 59 0 N/A 234 3.97
C6 3 29 3 100 368 12.59
Set A 60 499 46 76.67 1935 3.79
Set B 76 410 60 78.95 1935 457
Set C 18 281 12 66.67 1374 4.85
A&B&C| 154 | 1190 118 76.62 5244 4,31

Table 5.2: System performance after size and shape filtering
FP/slice rate drops significantly while sensitivity is decreased less than 2%.

Table 5.3 illustrates the figures for final performance of ROI detection system. This
includes the final intensity based filtering phase. The final sensitivity is 73.38% and FP rate
is 3.39 FP/slice. This stage proved to be particularly effective in refining cases with higher
FP rates. For instance consider case A3, B3 and B4. By comparing the numbers in Table 5.2
and 5.3 it can be observed that the FP/slice rate for these subjects reduced from 4.02, 5.38
and 6.48 to 2.47, 3.34 and 4.13 FPs/slice respectively. This translates to the fact that these
cases contained many non-nodule objects which had comparable shape and size to that of
nodules, because they did not get filtered in the shape and size analysis stage. Filtering based
on local gray level density profile and mean pixel intensity helped to distinguish those
objects from true nodules. Figure 5.1 plots the number of false positive objects per case after

each filtering step. Between the second step (filtering based on local density profile) and the
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third step (filtering based on object mean intensity), the latter almost always has a greater
share in downsizing the number of non-nodule objects. According to figure 5.1, in cases Al,
C4 and C6, the number of false positive objects detected by system after the third phase of
FP reduction is larger than the number of false positives after the second phase. This is
because objects are counted three dimensionally. i.e., 3D connected componeﬁts are counted
as one object, and hence some objects appear in more than one slice. What happened in cases
Al, C4 and C6 is that through the third filtering step, a part of such thick object is removed
from one of the 2D slices in which it appears. Consequently the object is broken into more

than one object in the 3D space.

#of #of
Case Tag nodules slices # true detected Sensitivity # objects detected FPs/slice
Al 1 40 0 0 127 3.18
A2 0 67 0 N/A 147 2.19
A3 34 57 28 82.35 169 247
A4 1 50 0 0 71 1.42
AS 1 61 0 0 127 2.08
A6 13 40 9 69.23 170 4.03
A7 0 37 0 N/A 180 4.86
A8 1 53 0 0 151 2.85
A9 8 59 6 75 192 3.15
Al0 1 35 0 0 134 3.83
B1 58 65 48 82.76 440 6.03
B2 0 32 0 N/A 139 4.34
B3 13 61 9 69.23 213 3.34
B4 1 46 0 0 190 4.13
BS 0 51 0 N/A 90 1.76
B6 0 56 0 N/A 137 245
B7 3 55 2 66.67 111 1.98
BS 1 44 0 0 185 4.20
Cl1 9 68 6 66.67 143 2.01
C2 2 53 0 0 141 2.66
C3 1 37 1 100 217 5.84
C4 3 35 1 3333 137 3.89
C5s 0 59 0 N/A 181 3.07
Cé6 3 29 3 100 359 12.28
Set A 60 499 43 71,67 1468 2.86
Set B 76 410 59 717.63 1505 3.53
Set C 18 281 11 61.11 1178 4.15
A&B&C| 154 1190 113 73.38 4151 3.39

Table 5.3: Final performance of ROI detection system, after the intensity based filtering phase
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Figure 5.1: Number of detected objects after each rule based filtering step
SS stands for shape and size analysis, DP stands for density profile analysis, and MI stands for mean intensity
analysis.

The final results of the ROI detection system proposed in this thesis, is comparable to
some of the well-known lung nodule CAD studies in the literature [15-17]. The system
performance is compared to that of a recently in-house developed rule based CAD system
[12] in a case by case basis. Table 5.4 shows that comparison for the three groups of patients.
The system discussed in this thesis outperforms the system of [12] in overall sensitivity. The
FPs/slice rate in the current system is 0.24 (7%) higher than that of [12]. This is minor and
acceptable considering the better sensitivity current system offers.

In terms of sensitivity, system in [12] beats the current system only for patients of
group B. This is mainly because of the higher detection sensitivity of [12] in case B1, which
is the case with greatest number of nodules. System of [12] detected 52 of the 58 true nodules
exis_ting in case B1, while the current system detected 48. Performance of the current system
however is better than [12] both for patients of group A and C. The superiority of current
system is clearly evident for patients of group C, for which the overall sensitivity of current
system is 38.89% higher than that of [12] (61.111% versus 22.222%). Inspection showed that
system of [12] was unsuccessful in detecting nodules which were either very small or had

inconspicuous intensity difference with their surrounding lung context. The current ROI
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detection system recognized such cases because of its consideration of local intensity

variations. Several examples are shown in figure 5.2.

Sensitivity FPs/slice Current . Sensitivity FPs/slice
Case Tag Current System System System of [12] System of [12]
Al 0 3.16 0 2.23
A2 N/A 2.19 N/A 1.31
A3 8235 2.47 73.53 2
Ad 0 1.42 100 1.82
AS 0 2.08 0 2.07
A6 69.23 4.03 69.23 348
A7 N/A 4.86 N/A 4.14
A8 0 2.85 100 3.23
A9 75 3.153 75 2.34
A10 0 3.83 0 3.60
B1 82.76 6.03 89.66 5.51
B2 N/A 4.34 N/A 4.19
B3 69.23 3.34 76.92 3.18
B4 0 4.13 0 3.59
BS N/A 1.76 N/A 1.96
B6 N/A 2.45 N/A 2.04
B7 66.67 1.98 66.67 2.18
B8 0 4.20 0 5.14
Cl1 66.67 2.01 11.11 1.19
C2 0 2.66 0 2.23
C3 100 5.84 0 6.86
C4 33.33 3.89 33.33 4.97
CSs N/A 3.07 N/A 2.58
C6 100 12.28 66.67 11.31
Set A 71.67 2.86 70 247
SetB 77.63 3.53 84.21 3.44
Set C 61.11 4.15 22.22 3.94
A&B&C 73.38 3.39 71.43 3.15

Table 5.4: Performance comparison for ROI detection system suggested in current thesis and system
discussed in [12]

Another key advantage of the current ROI detection system over system of [12] and
perhaps some other lung nodule CAD systems, is its fast performance or time efficiency.
Figure 5.3 depicts the time elapsed for the ROI detection process in [12] and in the current
system, on a case by case basis. The average elapsed time for processing one case (patient)
by [12] is 1080 seconds (18 minutes). This is compared to 287 seconds (4.8 minutes) of
average ROI detection time by the present system®. Therefore the current system showed

3.75 fold increase in performance time, while it produced similar —if not better- results.

2 Both CAD systems were run on a computer with 1.6 GHz Pentium M processor and 1 GB of RAM.
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Figure 5.2: Examples of nodules missed by system of [12] but detected by the current ROI detection
system
(a) Small nodule with inconspicuous intensity difference with its surrounding lung context. (b) Small well-
formed nodule.



@

Figure 5.2 (continued): (c) Small pale nodule hardly recognizable from the background and nearby thin vessels.
(d) Small irregular shaped nodule.
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Figure 5.3: Time elapsed in seconds by the system of [12] and the current system for the ROI detection
process, on a case by case basis

5.3 Enhanced FP Reduction Scheme Results

The enhanced FP reduction system, discussed in chapter 4, was applied to potential

nodule candidates detected by two different ROI detection methods. The following sections

explain each test.

5.3.1 Results of Applying the Enhanced FP Reduction Scheme on the ROI Detection
System Discussed in Chapter 3

As explained in chapter 4, the enhanced FP reduction scheme is a hybrid approach
based on learning algorithms. In order to test the proposed scheme, it was applied as an
enhanced FP reduction stage to final candidates designated by the ROI detection system of
chapter 3. The effect on each case together with the overall effect is summarized in Table 5.5.
The overall FP/slice rate downgrades from 3.39 to 2.42, a 29% improvement in terms of false
positive reduction. The overall sensitivity is decreased 1.3% (73.38% to 72.08%), due to

missing two nodules in the course of the enhanced FP reduction stage.
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Sensitivity - BEFORE FPs/slice - BEFORE Sensitivity - AFTER FPs/slice - AFTER
. enhanced FP reduction enhanced FP reduction | enhanced FP reduction enhanced FP
Case Tag scheme scheme scheme reduction scheme
Al 0 3.18 0 0.05
A2 N/A 2.19 N/A 0.01
A3 82.35 2.47 79.41 2.07
A4 0 1.42 0 0.04
A5 0 2.08 0 1.82
A6 69.23 ‘ 4.03 69.23 3.78
A7 N/A 4.86 N/A 0.08
A8 0 2.85 0 2.75
A9 75 3.15 75 2.59
Al10 0 3.83 0 3.83
B1 82.76 6.03 82.76 6.03
B2 N/A 4.34 N/A 0.09
B3 69.23 3.34 69.23 2.92
B4 0 4.13 0 3.48
BS _N/A 1.76 N/A 0.04
B6 N/A 2.45 N/A 1.96
B7 66.67 1.98 66.67 1.95
BS 0 4.20 0 3.57
Cl1 66.67 2.01 55.56 1.62
C2 0 2.66 0 2.38
C3 100 5.84 100 5.30
C4 33.33 3.89 33.33 0
CS N/A 3.07 N/A 2.86
C6 100 12.28 100 1193
Set A 71.67 2.86 70 1.65
Set B 77.63 3.53 717.63 2.70
Set C 61.11 4.15 55.56 3.37
A&B 75 3.16 74.26 2.15
A&B&C 73.38 3.39 72.08 242

Table 5.5: Impact of the enhanced FP reduction scheme (hybrid learning scheme) on the performance of
the lung nodule detection system of chapter 3

The results are even superior, when only sets A and B are looked at (row one before
last, Table 5.5). With the price of less than 1% decrement in sensitivity (74.26% versus
75%), the FP/slice rate is lowered 32%. Also according to the table, between the three sets,
set A benefits the greatest FP reduction (2.86 FP/slice down to 1.65 FP/slice or 42%
reduction).

Experiments show that without the fuzzy c-means clustering module, the overall
FP/slice rate of Table 5.5 will jump up by about 8% while one more true nodule will be
missed. This highlights another advantage of the hybrid structure of the proposed scheme.
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Most of the features used to train the classifier in the enhanced FP reduction system
are similar to features used earlier in the ROI detection system for purpose of filtering nodule
objects from non-nodules ones. This might raise the argue that how can the enhanced FP
reduction stage reduce the number of false positives even further? The answer refers to the
ability of learning algorithms to converge multidimensional data into a single classification
decision. While the components of the proposed enhanced FP reduction scheme, i.e., fuzzy c-
means clustering and linear discriminant analysis are different in the sense that the former is
an unsupervised learning method and the latter is a supervised one, the notion of both is to
group data points that populate some multidimensional space into a specific number of
different clusters. In the case of current research, although the candidates are filtered in the
ROI detection phase based on the criteria set on shape, size or intensity features, the filtering
steps are independent from each other. In the enhanced FP reduction scheme however, the
learning algorithms fuse the various features in order to minimize the group membership
error and maximize the differences between groups. The groups are nodules and non-nodules
of course.

At the fixed false positive rate of 2.4 FP/slice, overall sensitivity of the computer-
aided lung nodule detection system discussed in this thesis when nodules smaller than 3 mm
in diameter are excluded is 77.08% and when nodules smaller than 4 mm in diameter are

excluded, it is 82.84%.

5.3.2 Results of Testing the Enhanced FP Reduction Scheme on a Previously
Developed ROI Detection System

As a second test, the enhanced FP reduction system was applied to nodule candidates
detected by the rule based lung nodule CAD system developed by [12]. Table 5.6 shows the
performance numbers of that system before and after applying the enhanced FP reduction
scheme. The overall FP/slice rate is enhanced by almost 38% (3.15 FP/slice declined to 1.96
FP/slice), while the overall sensitivity dropped 2.6%.

For patients of group B, no nodule was missed through the enhanced FP reduction
stage, thus the sensitivity for that group remained at 84.2%. The other two groups of patients
(A and C) lost two nodules each in the midst of the enhanced FP reduction stage. Without
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group C, which suffered from poor‘ sensitivity even before the enhanced FP reduction stage,
the final sensitivity and FP/slice figures would be 76.47% and 1.67 respectively. Comparing
these numbers to analogous quantities (i.e., sensitivity and FP/slice for groups A and B only)
before the enhanced FP reduction stage, shows a 43% drop in FP rate and only 1.47%
cutback in sensitivity. This comparison can be viewed in row one before last in Table 5.6.
These results are quite promising when judged against results reported by other popular lung
nodule CAD systems [11], [17], and [18].

Sensitivity - BEFORE FPs/slice - BEFORE Sensitivity - AFTER FPs/slice - AFTER
enhanced FP reduction | enhanced FP reduction | enhanced FP reduction | enhanced FP reduction
Case Tag scheme scheme scheme scheme
Al 0 2.23 0 0.10
A2 N/A 1.31 N/A 0.13
A3 73.53 2 70.59 1.47
Ad 100 1.82 0 0.04
AS 0 2.07 0 0.07
A6 69.23 3.48 69.23 2.95
A7 N/A 4.14 N/A 0.08
A8 100 3.23 100 2.51
A9 75 2.34 75 1.86
Al0 0 3.60 0 0.06
B1 89.66 5.51 91.38 5.23
B2 N/A 4.188 N/A 0.03
B3 76.92 3.18 76.92 2.97
B4 0 3.59 1] 3.39
BS N/A 1.96 N/A 0.10
B6 N/A 2.04 N/A 1.18
B7 66.67 2.18 33.33 1.60
B§ 0 5.14 0 4.82
Cl1 11.11 1.19 0 0.04
C2 0 2.23 0 0
C3 0 6.86 0 6.57
C4 33.33 4.97 33.33 4.57
Cs N/A 2.58 N/A 2.25
C6 66.67 11.31 33.33 9.31
Set A 70 2417 66.67 0.94
SetB 84.21 3.4 84.21 2.56
Set C 22.22 3.94 11.11 2.88
A&B 77.94 291 76.47 1.67
A&B&C 71.43 3.15 68.83 1.96

Table 5.6: Impact of the enhanced FP reduction scheme (hybrid learning scheme) on the performance of
the lung nodule detection system of [12]
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The enhanced FP reduction system showed very good performance in retaining those
nodules that are hardly distinguishable from non-nodule components. Several instances can
be seen in ﬁgures 5.4-5.6. In all of these figures the candidates enclosed in circle present true
nodules, that were correctly detected by the initial ROI detection system and were also
retained after the enhanced FP reduction stage. The objects appearing inside rectangles relate
to false positives erroneously detected by the initial ROI detection system, which were
successfully recognized as false positives (i.e., were classified as belonging to the group of

non-nodules) after the enhanced FP reduction stage.

Figure 5.4: An example of successful nodule classification
The circle encloses a true wall nodule. The rectangle surrounds a very similar wall object that is in fact a false
positive erroneously detected by the original CAD system. The current hybrid FP reduction approach
recognizes and removes this.
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5.4 Comparison of Results with Previous Works

A summarized comparison of performance results is demonstrated in Table 5.7. All
the studies in this table followed a rule based or rule based combined with linear discriminant

analysis method for computer aided lung nodule detection.

Research Year | Sensitivity | FP/slice
Armato et al. [15] | 1999 70% 3.0
Gurcan et al. [18] | 2003 84% 1.7
Armato et al. [17] | 2005 70% 1.6

Dajnowiec et al. | 2005 71% 3.2
Current Research | 2006 72% 24

Table 5.7: Comparison of performance results with previous works

FP performance of current research is better than two of the previous studies (Armato
1999 and Dajnowiec 2005). The sensitivity of present research is better than all other works
in the table except the work of Gurcan et al. The main reason for the superiority of results of
that work is because the rules were designed based on a priori knowledge gained from
radiologists such as the anatomical characteristics and morphological features of lung
nodules (size, location and shape). Also total of 15 2D and 3D features were extracted and
used in that study, which is greater than the number of features (9 features) used in the
current thesis. The reader is advised that along with the possible benefit of result
improvement that may be achieved by adding more features to the classification system also
comes more time consumption and computation complexity.

Armato et al., 2005 used jackknife LDA, in which candidates from half of the
database, randomly chosen, were used for training and the other half for testing. Final
performance was assessed based on the average result of multiple such jackknife runs.
Training and testing of the automated nodule detection method were thus performed
separately on subsets of nodule candidates from independent patients. Their database
contained 393 patients, total of 11029 slice images and 470 lung nodules. Each case
demonstrated at least one lung nodule [17]. A better result is expected from that study, as
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their database is much broader than what was uséd for the current thesis. For a supervised
learning method, the greater number of training samples, the more cases the classifier will be
expoé;ed to or the more it will learn. The great number of patients in the work of Armato et
al., 2005 élso allowed them to train and test the classifier independently, which is definitely a
fairer method compared to the leave-one-out-by-case (Round Robin) scheme used in the
current thesis. The reader is reminded that in the leave-one-out-by-case scheme, LDA
classifier is trained by all except one nodule candidate and the omitted candidate is
subsequently used to test the trained classifier. Hence there is a big difference between when
the left out test case has many nodules and when it has no or little number of nodules. When
a case with many nodules is out for testing, the classifier has less to learn from compared to
when a case with no/little number of nodules is out as the test case. However, exploiting the
leave-one-out-by-case method was inevitable in the case of this thesis, due to dataset’s
limited number of patients.

It should also be noted that except current research and work of Dajnowiec 2005,
which worked on a pediatric database, all other studies in Table 5.7 worked with adult

patients.
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6 Conclusions

A computerized system for detection of pulmonary nodules in computed tomography
images is developed. The initiative for implementing such a system was to facilitate the
diagnosis process for thoracic radiologists. Toward this objective, a collaborative research
between the Medical Imaging Department of The Toronto Hospital for Sick Children and
Department of Electrical Engineering of Ryerson University has been undertaken. The
system developed for this thesis is the second practicable outcome of this collaboration after
the rule based system developed by [12].

This research first started as a continuation to the system of [12]. As part of the future
- works suggested in [12], false positive reduction was mentioned as the main area that needed
to be improved. The idea of design and development of an enhanced false positive reduction
scheme that can be used as an improving step after any lung nodule CAD system was
inspired from that need. Later a new ROI detection system was developed by the author. The
ROI detection system together with the enhanced false positive reduction system makes a
comprehensive lung nodule detection tool.

The ROI detection system developed for this thesis designates regions of interest or
possible nodule candidates through gray level intensity and morphology analysis. By
incorporating techniques such as contrast enhancement, histogram analysis, and thresholding,
the system spots all the regions suspected to be nodules in lung. Then it pins down the
candidates with highest possibility of being lung nodule through a series of rule based
filtering stages. Those stages include applying morphological operations on the initial
candidates and filtering the objects by analyzing their shape, size, local density profile and
mean intensity. Results show the effectiveness of the ROI detection system in pulling out
nodules from the lung context. After running the system on 24 pediatric cases, an overall
sensitivity of 73.38% with 3.39 FP/slice was achieved. The cases belonged to three different
groups of patients. ROI detection results for group A and B in particular (72% with 2.86
FP/slice and 78% with 3.53 FP/slice respectively) are quite encouraging. The database used
in this research contains a broad variety of nodules both in terms of effective size and

intensity and also in terms of distribution of nodules among subjects. Also, nodules appear in
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various shapes and locations in different cases of the database. They include both interior and
juxtapleural nodules, which range from round well-formed objects to irregular lesions. This
is in. fact considered a plus for the developed system, as it is not biased to a specific type of
nodule. The multistage target specific structure of the discussed ROI detection system is
unique. This is the only rule based systerh that targets each and every source of false positive
findings specifically. That includes recognition of airway tube cross sections, elongated in-
plane vessels and soft tissue, and cross sections of in-depth vessels. Another advantage of
this ROI detection system is its processing time efficiency, which makes it suitable for use in
clinical environments.

The enhanced false positive reduction scheme is a hybrid approach for reduction of

.false positive detections produced by any rule based lung nodule detection system. The
scheme consists of two main modules, the fuzzy c-means clustering and the iterative linear
discriminant analysis. Fuzzy clustering shows effectiveness in recognizing those cases which
have no true nodules. The iterative LDA step does a very good job in adapting the level of
discrimination with the aggressiveness of the classifier. A combination of morphological,
gray level related, and contextual features constitute the features for training and testing of
the classifier. This hybrid approach results in efficient drop of FP/slice rate, while
maintaining the level of sensitivity. Testing this hybrid scheme on two different ROI
detection systems (ROI detection system developed for this thesis and ROI detection system
of [12]) resulted in 30% and 38% more FP drop respectively.

Lack of a universal dataset to use as gold standard for testing and comparing various
thoracic CAD methods is a major issue. Many different lung nodule detection methods have
been investigated in the literature. While some methods have reported extremely encouraging
results [27], [31, 32], it is difficult to generalize the effectiveness of those methods. From
studying the evolution of lung nodule computer aided detection and diagnosis, it appears that
rule based approaches complemented with discriminant analysis are the most robust of all
[15-18]. The results achieved by the computerized luhg nodule detection and enhanced FP
reduction system discussed in this thesis are comparable with research carried out by the
well-known Kurt Rossmann Laboratories for Radiologic Image Research in University of
Chicago [15-17]. In their recent publication, Armato et al. have claimed a sensitivity of 70%

-and 1.6 FP/slice [17]. System of current thesis is stronger in terms of sensitivity (72%) Witﬁ
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slightly higher FP rate (2.42/slice). The capability of the enhanced FP reduction scheme to
converge multidimensional data into a single classification decision makes it a constructive
procedure for recognizing false positive candidates in findings of rule based lung nodule
CAD systems. The hybrid structure and adaptive nature of the enhanced FP reduction system
are novel contributions exclusive to the present research.

All in all, the system developed in this Master’s thesis for computerized detection of
lung nodules with an enhanced false positive reduction scheme is definitely one step forward
for applying concepts such as image processing, computer vision and machine learning in

order to facilitate the process of conventional thoracic radiology.

6.1 Future Work

It has been tried to implement a practical lung nodule CAD system in the condensed
time frame of a Master’s research. However the current system can be further developed both
in ROI detection and false positiQe reduction aspects. The primary venue of development is
expanding the database. Growth of nodule database both in number and variety certainly
adds to the universality and robustness of the system.

One useful step is perhaps to survey the CT scans in detail and seek image acquisition
requirements that can upgrade the final image quality of scans. This can be achieved by
imposing requirements on the scanner hardware or on the dose, setup or procedures through
which the scans are acquired.

Investigations show that 7 nodules were missed in the lung extraction stage. As
mentioned previously in chapter 3, lung extraction was performed by a 3D segmentation
algorithm suggested in [12]. Thus another venue for development would be improving the
performance of that algorithm or creating new segmentation algorithms in order to lose less —
ideally no- true nodules in the midst of the lung segmentation process.

In the ROI detection part of work, the shape and intensity analyses can be extended to
three dimensions. Comparison of the local density profile of similar locations in adjacent
slices can provide insight about the nature of objects. For example, if density profiles of a
single object in adjacent slices contain a sharp pulse at a certain coordinate, it can be

concluded that the object is most likely a vertical vessel running through more than one slice.
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In the enhanced false positive reduction section, more features can be added to the
system for training and testing the classifier. Threshold, at which the fuzzy c-means
clustering module or the iterative LDA module terminates, is another area to explore.
Generally speaking, after discriminant analysis, each class Will ideally have a normal
distribution of discriminant scores; the degree of overlap between the discriminant score
distributions can then be used as a measure of the success of the technique. It has been
suggested [41] that when small samples are used and the normality assumption is violated,
linear classification functions may be more reliable than quadratic functions [42]. In spite of
all this, other types of discriminant analysis such as the quadratic form can be tested in the
enhanced FP reduction scheme. Exploring the degree of effectiveness of other classification
methods such as support vector machine (SVM) or relevance vector machine (RVM) may

also be worthwhile.
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