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ABSTRACT

This communication deals with data reduction and regression.
A set of high dimensional data (e.g., images) usually has only
a few degrees of freedom with corresponding variables that
are used to parameterize the original data set. Data under-
standing, visualization and classification are the usual goals.

The proposed method reduces data considering a unique
set of low-dimensional variables and a user-defined cost func-
tion in the multidimensional scaling framework. Mapping of
the reduced variables to the original data is also addressed,
which is another contribution of this work. Typical data re-
duction methods, such as Isomap or LLE, do not deal with
this important aspect of manifold learning. We also tackle the
inversion of the mapping, which makes it possible to project
high-dimensional noisy points onto the manifold, like PCA
with linear models. We present an application of our approach
to several standard data sets such as the SwissRoll.

Index Terms— Unsupervised learning, regression, data
reduction, multidimensional scaling

1. INTRODUCTION

Data (or dimensionality) reduction consists in determining a
set of reduced dimensionality variables capturing the major
features of a given set of high dimensionality data, which in
the present case are images. These original (noisy) data are
assumed to lie close to a (nonlinear) manifold whose dimen-
sion is the dimension of the reduced variables. The reduced
variables may be mapped onto the original data. We will call
the succession of data reduction and mapping (regression)
proceduresmanifold learning.

The usual goals of manifold learning are data understand-
ing (the few degrees of freedom are given a physical interpre-
tation, such as pose angle, giving a better understanding ofthe
data generation process), visualization (a scatter plot ofthe re-
duced variables is displayed, where each point is labeled with
the original data) and classification (classification is achieved
in a more robust manner in the space of reduced variables).
Application fields of data reduction and manifold learning are

face and character recognition, shape analysis and target clas-
sification, to mention a few examples.

Principal Component Analysis (PCA) typically addresses
the manifold learning issue, but its limitations are severeand
well-known: only linear manifolds may be handled (for ex-
ample, the SwissRoll [fig.1(a)], which is a nonlinear mani-
fold, can obviously not be described by PCA), and data re-
duction and regression are achieved in a quadratic framework
(i.e., the noise is assumed to be Gaussian [1]). Moreover, it
is also well-known that PCA does not always deal satisfy-
ingly with classification problems. Our goal is to propose a
method that is not restricted to linear manifolds, whose under-
lying cost function may be user-defined, and which is flexible
enough to adapt to a large class of classification problems.

Let y be any element of the original data set. The goal
is to determine the corresponding reduced vectorx, the map-
pingf and the noiseε such thaty = f (x)+ε. An additional
hypothesis is that the mappingf preserves distances (which
will be defined precisely later). There is no unique solution
to this problem, since any isometryI will yield another solu-
tion in the form

(

x′ = I (x) ; f ′ = f ◦ I
−1

)

. This undeter-
mination has no impact on the usual goals of data reduction
(i.e., data understanding, visualization, classification and the
computation of means). The noise distribution is assumed to
be known up to its parameter values. Determination ofx and
f will be achieved sequentially (we will estimate piecewise
linearf ’s).

The most straightforward extension of PCA, with a view
to handling nonlinear manifolds, is local PCA [2]. The orig-
inal data are processed groupewise, each group yielding its
own PCA-reduced variables. Though this approach is able
to adapt to nonlinear manifolds, the question of the determi-
nation of the initial groups of variables remains. This deter-
mination should be able to adapt to the shape of the man-
ifold. Moreover, the different sets of reduced variables are
unrelated, and the method is cast in a quadratic framework.
All these features obviously severely hamper the approach.
The problem must clearly be addressed globally (i.e., the data
cannot be processed groupewise) so that classification may
operate simultaneously on all data.



−10

0

10

−15

−10

−5

0

5

10

15
0

10
20

−50 0 50
−10

−5

0

5

10

(a) (b)

−5 0 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−50 0 50
−10

−5

0

5

10

15

(c) (d)

Fig. 1. SwissRoll example. (a) the original SwissRoll, (b) the
reduction with Isomap, (c) the reduction with LLE, (d) the
reduction with our cost function. A given point has the same
color on all graphs.

Typical global compression techniques are Isomap [3] and
LLE [4]. Isomap is a geodesic distance-based classical mul-
tidimensional scaling (MDS) [5], which is aimed at repro-
ducing a given interpoint distance matrix in low dimensional
space. It is to be considered as a global method since all dis-
tances, small and large, are reproduced simultaneously in the
reduced space. This raises the question of the immunity to
noise in the data, due to its quadratic nature [6]. LLE seeks to
preserve the local barycentric coordinates, and is to be con-
sidered as a local method (it proceeds by trying to preserve
the local geometric structure of points).

Several authors [7, 8] reduce the data groupewise and ad-
dress the linking of local reduced variables in coordination to
projection on the manifold. These approaches use a Gaussian
probabilistic framework with a fixed number of local linear
models and, as with our algorithm, do not require the original
sample points after the learning step.

This communication is organized as follows. Our ap-
proach is described in section 2. Several application exam-
ples are given in section 3. finally the conclusion and future
prospects to this work are presented in section 4.

2. DATA REDUCTION AND MANIFOLD LEARNING

In this section, we detail our method, both in its data reduction
and manifold learning (regression) aspects.

2.1. Data reduction

The problem here is to determine thexi’s such that the re-
duced interpoint distances‖xi − xj‖ match the correspond-

ing data interpoint distancesdij
∆
=

∥

∥yi − yj

∥

∥. Since the data
yi are supposed to lie close to a nonlinear manifold, we con-
sider geodesic distances in the original space, following the
Isomap algorithm. Euclidean distances are considered in the
reduced space since thexi’s are supposed to fill this space.

Isomap estimates thexi’s by minimization of a quadratic
stress function

∑

i,j (‖xi − xj‖ − dij)
2. We suggest esti-

mating thexi’s by minimization of
∑

i,j f (xi, xj), where

f (xi, xj) =

√

ε + (‖xi − xj‖ − dij)
2 dij

σ + dij

, (1)

which fits into the metric multidimensional scaling frame-
work [9, section 9.4.2].

The first factor is a robust (nonquadratic) discrepancy mea-
surement between the candidate distance‖xi − xj‖ and the
target distancedij , whereε is a small real number whose role
is to ensure the differentiability of the cost function. We con-
sider a robust discrepancy measurement since some geodesic
distances could be estimated with significant error, which should
have limited influence on the estimate. The second factor
weighs the discrepancy, such that nearby points (correspond-
ing to smalldij ’s) play no role in the estimate. The motivation
is that small distancesdij are highly contaminated by noise of
varianceσ2, and hence are not reliable.

Input : original coordinates
Output : reduced coordinates
begin

for each point on the manifold do
Compute the (Euclidean) distances to its
nearest neighbors

end
Estimate the geodesic distances using Floyd’s
algorithm;
Initialize randomly the reduced coordinates;
while not converged do

Optimize all points simultaneously
end
while not converged do

Optimize simultaneously some points drawn
randomly

end
end

Algorithm 1 : data reduction algorithm

The optimization of this cost function (referred to as OCF
in the following sections) is achieved by a standard damped
gradient optimizer, where all pointsxi are updated jointly.
Unfortunately, the algorithm usually gets trapped in a local
minimum. This is why an additional gradient step in which
only some points can be moved jointly is needed (see algo-
rithm 1).



2.2. Regression

The estimation of the mapping of the reduced variables to
the original variables is an unsupervised nonlinear regression
problem, which is quite intricate because of its dimension-
ality. To the best of our knowledge, this general regression
problem (regressing data fromRn to R

m) is not addressed in
the literature. Usual nonlinear regression techniques address
much simpler problems, where the target variable is scalar.
Spline regression may tackle this issue. But processing each
component of the data independently is precluded here be-
cause of the computational cost. Therefore, we process all
components jointly, using locally linear models. The problem
is then to label allxi’s and to estimate the matrices corre-
sponding to the linear models (see algorithm 2).

Input : original and reduced coordinates
Output : point labels and model matrices
begin

while exists a point whose neighbors are not
labeled do

Pick randomly a point whose neighbors are not
labeled;
Compute the matrixW regressing this
neighborhood1© ;
Update all labels and update all matrices2©;
Prune any model (labels and matrix) having too
few points 3©;

end
for every remaining unlabeled point do

Search through the neighborhood;
Assign them to nearby planes4©

end
end

Algorithm 2 : piecewise linear regression

Some details are needed for algorithm 2 :

1© LetY i be the matrix consisting of allyj that are neigh-
bors ofyi andXi the corresponding matrix of allxj . Matrix
W is estimated from the equationY i ≃ WXi by mean
squares.

2© A point is assigned to a linear model if the norm of
the reconstruction error is less than a given factor times the
standard deviation associated to the linear model. Once all
updates are completed, these variances are computed again
for all linear models and their assigned points.

3© If a linear model has too few points, the matrix that
describes it cannot be computed. In this case, the linear model
is discarded.

4© When no linear model can be added, some points may
remain unassigned. In this case, they are assigned to the linear
model most represented in their neighborhood.

2.3. Projecting a point on the manifold

An important feature of data reduction techniques and mani-
fold learning is the ability to project or to process (e.g., clas-
sify) an incoming point without running all computations from
scratch. Formally, for a givenyi, we must determine the cor-
respondingxi andεi.

For each linear modelW j , a candidate(xij , εij) is com-
puted by mean squares. The variance associated toW j is
used to compute the likelihood ofxij . The maximum likeli-
hood estimate is retained (see algorithm 3).

Input : reduced coordinates, point labels and model
matrices

Output :
begin

for each linear model do
Compute corresponding reduced coordinates;
Map the reduced coordinates on the manifold;
Compute its likelihood;

end
Retain the label maximizing the likelihood;

end
Algorithm 3 : projection of a new point on the manifold

3. APPLICATION

We apply our data reduction and regression methods to sev-
eral standard data sets. Comparison with other methods is
proposed. We also deal with projecting a new point on the
manifold.

Two types of data are analyzed, on the one hand, large sets
of data (the Swiss Roll) of low extrinsic and intrinsic dimen-
sions, and on the other hand, data sets having far fewer points,
but of high extrinsic dimension (the duck images, from the
COIL-20 [10] data sets).

3.1. Data reduction

Our data reduction approach is compared to a standard method
in the field, namely Isomap. To quantify the quality of the
data reduction step, true geodesic distances (computed ana-
lytically) are compared to Euclidean distances in the reduced
space. Comparison is achieved using correlation. Data are
noise corrupted. Results show that our OCF behaves slightly
better than Isomap (see table 1).Parameterσ is set to the first
percentile of all distances on the manifold. Several runs are
achieved to try to escape from local minima.

3.2. Regression

To assess the quality of the regression, the samples used to
learn the linear models are projected onto the approximated
manifold. Fig. 2 displays the result for the SwissRoll.
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Fig. 2. SwissRoll regression. (a) regression of the SwissRoll,
(b) histogram of the norm of the reconstruction error

Noise Isomap OCF
None 0.9997 0.9997

Gaus. 2.5% 0.9988 0.9992
Exp. 0.3% 0.9996 0.9997

Table 1. Correlation between real distances and estimated
distances for the SwissRoll for Isomap and OCF with an 8-
neighborhood for compression. The percentage indicates the
value of the variance of the data divided by the variance of the
noise.

Low-dimension coordinates computed with Isomap and
with OCF lead to comparable reconstruction errors although
increasing noise levels leads to lower errors with OCF. The
piecewise linear regression algorithm is executed severaltimes
to try to escape from local optima. A higher number of neigh-
bors can generate a higher variance, but a smoother global
manifold, while a lower number of neighbors will lead to a
lower reconstruction error, but can generate a noisy manifold.

We also addressed the reconstruction of an image of the
Coil-20 database (see Fig. 3). We reconstructed one of the
duck images with PCA (6 and 20 principal vectors) and with
our technique (with 2 coordinates only). Our approach clearly
exhibits more flexibility than PCA. Moreover, physical inter-
pretation of the data generating process is impossible in di-
mension 20. This interpretation is possible in dimension 2,
which is the dimension of the reduced variables of our ap-
proach.

(a) (b) (c) (d)

Fig. 3. Reconstruction example. (a) Original duck image,
(b) Projected duck image with the proposed method (reduced
variable of dimension 2) (c, d) Projected duck image with 6
and 20 principal vectors (PCA)

4. CONCLUSION AND FUTURE WORK

We have presented a comprehensive framework for learning a
nonlinear manifold and for projecting new points on this man-
ifold. The framework is divided into two main steps, the first
being a dimensionality reduction process that enables learn-
ing reduced coordinates, and the second being a piecewise
linear mapping of the manifold with the reduced coordinates,
leading to an efficient projection on the manifold.

Work is in progress regarding manifolds linked to shape
representations. The ultimate goal of our study is learningand
classification of brain structures in medical images.
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