UNSUPERVISED NONLINEAR MANIFOLD LEARNING

Matthieu Brucher, Christian Heinrich, Fabrice Heitz Jean-Paul Armspach
Laboratoire des Sciences de I'lmage, Laboratoire de Neuro-Imagerie in Vivo,
de I'Informatique et de la Télédétection, Université Louis Pasteur, Strasbourgrrance
Université Louis Pasteur, Strasbourgrrance (LNV, UMR 7004, CNRS-ULP)

(LSIIT, UMR 7005, CNRS-ULP)

ABSTRACT face and character recognition, shape analysis and tdeget ¢
sification, to mention a few examples.

This communication deals with data reduction and regressio . ) )
A set of high dimensional dat&.§)., images) usually has only Principal Component Analysis (PCA) typically addresses

a few degrees of freedom with corresponding variables thaf'€ manifold learning issue, but its limitations are sewere
are used to parameterize the original data set. Data undef€ll-known: only linear manifolds may be handled (for ex-
standing, visualization and classification are the usualggo  2MPle, the SwissRoll [fig.1(a)], which is a nonlinear mani-
The proposed method reduces data considering a uniqlﬁ Id,_can obviously _not be des_cnbed_ by PCA), "’T”d data re-
set of low-dimensional variables and a user-defined costfun .uct|on anq regression are achieved in a}quadratlc frarﬂewor
tion in the multidimensional scaling framework. Mapping of .("e" the noise is assumed to be Gaussian [1]). Moreoyer, It
the reduced variables to the original data is also addresse! also .well-knqv.vn t'hat PCA does not always deal satisfy-
which is another contribution of this work. Typical data re- ingly with C"'?‘SS'f'Ca“Or! problems. Our gpal IS to propose a
duction methods, such as Isomap or LLE, do not deal wit _ethod thatis r_10t restricted to I|nea_rman|folds,\_/vhqseann_d
this important aspect of manifold learning. We also tackk t ying cost function may be user-defined, f”‘.”d V.Vh'Ch Is flexible
inversion of the mapping, which makes it possible to projeanough to adapt to a large class of classification problems.
high-dimensional noisy points onto the manifold, like PCA  Lety be any element of the original data set. The goal
with linear models. We present an application of our appnoacis to determine the corresponding reduced vegtahe map-
to several standard data sets such as the SwissRoll. ping f and the noise such thay = f (x)+e. An additional
, hypothesis is that the mappinfpreserves distances (which
regression, dataij pe defined precisely later). There is no unique solution
to this problem, since any isomet#ywill yield another solu-
tion in the form(z’ = Z (z); f' = f oZ~'). This undeter-
1. INTRODUCTION mination has no impact on the usual goals of data reduction
(i.e., data understanding, visualization, classification and the
Data (or dimensionality) reduction consists in determgnén  COmputation of means). The noise distribution is assumed to
set of reduced dimensionality variables capturing the majoPe known up to its parameter values. Determinatiom ahd
features of a given set of high dimensionality data, which inf Will be achieved sequentially (we will estimate piecewise
the present case are images. These original (noisy) data dfaear f's).
assumed to lie close to a (nonlinear) manifold whose dimen- The most straightforward extension of PCA, with a view
sion is the dimension of the reduced variables. The reduce handling nonlinear manifolds, is local PCA [2]. The orig-
variables may be mapped onto the original data. We will calinal data are processed groupewise, each group yielding its
the succession of data reduction and mapping (regressiopyvn PCA-reduced variables. Though this approach is able
proceduresnanifold learning. to adapt to nonlinear manifolds, the question of the determi
The usual goals of manifold learning are data understandiation of the initial groups of variables remains. This dete
ing (the few degrees of freedom are given a physical interpremination should be able to adapt to the shape of the man-
tation, such as pose angle, giving a better understandithggof ifold. Moreover, the different sets of reduced variables ar
data generation process), visualization (a scatter plihteofe-  unrelated, and the method is cast in a quadratic framework.
duced variables is displayed, where each point is labelt#d wi All these features obviously severely hamper the approach.
the original data) and classification (classification isieedd  The problem must clearly be addressed globally,the data
in a more robust manner in the space of reduced variablesjannot be processed groupewise) so that classification may
Application fields of data reduction and manifold learnimg a operate simultaneously on all data.

Index Terms— Unsupervised learning,
reduction, multidimensional scaling



0 ""'-h&}.««.,.@‘?"*‘ﬁ“ ing data interpoint distances; = |ly: — y;||- Since the data
#f‘g%‘.}{%’j‘ y, are supposed to lie close to a nonlinear manifold, we con-
N"”t:‘" s RS sider geodesic distances in the original space, followirgy t
oo & . & ok . . . . )
e *;-:tgg g Isomap algorithm. Euclidean distances are consideredein th
- w"‘;'*??i,?;" reduced space since thg's are supposed to fill this space.
L RTINS Isomap estimates the;’s by minimization of a quadratic
0 t; ® stress function)’, ; (|lz; — ;| - di;)?. We suggest esti-
. (b) mating thex;'s by minimization of_, ; f (z;, z;), where
] e S F @iy = e+ (o -yl —dy)® S5 ()
3 plhaier. 2T x) = il — das 7
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PE, it ol v'.,‘g‘ o kI
s%}iﬁ?“ *E{Q& o which fits into the metric multidimensional scaling frame-
4 O - -r-a:wé’ %.;%“#-.' v s work [9, section 9.4.2].
(c) (d) The first factor is a robust (nonquadratic) discrepancy mea-

surement between the candidate distajiee— « ;|| and the
Fig. 1. SwissRoll example. (a) the original SwissRoll, (b) thetarget distancé;;, wheree is a small real number whose role
reduction with Isomap, (c) the reduction with LLE, (d) the is to ensure the differentiability of the cost function. Wene
reduction with our cost function. A given point has the samesider a robust discrepancy measurement since some geodesic
color on all graphs. distances could be estimated with significant error, whingiusd
have limited influence on the estimate. The second factor
weighs the discrepancy, such that nearby points (correspon
519 to smalld;;’s) play no role in the estimate. The motivation
|§ that small distances; are highly contaminated by noise of
variances?, and hence are not reliable.

Typical global compression techniques are Isomap [3] an
LLE [4]. Isomap is a geodesic distance-based classical mu
tidimensional scaling (MDS) [5], which is aimed at repro-
ducing a given interpoint distance matrix in low dimensiona
space. Itis to be considered as a global method since all dis- [nput: original coordinates
tances, small and large, are reproduced simultaneousheint ~ Output: reduced coordinates
reduced space. This raises the question of the immunity to begin
noise in the data, due to its quadratic nature [6]. LLE seeks t for each point on the manifold do _
preserve the local barycentric coordinates, and is to be con Compute the (Euclidean) distances to its
sidered as a local method (it proceeds by trying to preserve nearest neighbors

the local geometric structure of points). End. h desic di ing Flovd’
Several authors [7, 8] reduce the data groupewise and ad- alsgtg::?r;[r? e geodesic distances using Floyd's

dress the linking of local reduced variables in coordinatim
projection on the manifold. These approaches use a Gaussian
probabilistic framework with a fixed number of local linear
models and, as with our algorithm, do not require the origina
sample points after the learning step.

This communication is organized as follows. Our ap-

Initialize randomly the reduced coordinates;
while not converged do

| Optimize all points simultaneously
end

while not converged do
Optimize simultaneously some points drawn

proach is described in section 2. Several application exam- randomly
ples are given in section 3. finally the conclusion and future end
prospects to this work are presented in section 4. end
Algorithm 1: data reduction algorithm
2. DATA REDUCTION AND MANIFOLD LEARNING
In this section, we detail our method, both in its data reiduct The optimization of this cost function (referred to as OCF
and manifold |earning (regression) aspects_ in the fO"OWing SeCtionS) is achieved by a standard damped

gradient optimizer, where all pointg; are updated jointly.
Unfortunately, the algorithm usually gets trapped in a loca
minimum. This is why an additional gradient step in which
The problem here is to determine thg's such that the re- only some points can be moved jointly is needed (see algo-
duced interpoint distancese; — x;|| match the correspond- rithm 1).

2.1. Datareduction



2.2. Regression 2.3. Projecting a point on the manifold

the original variables is an unsupervised nonlinear resioes
problem, which is quite intricate because of its dimension-
ality. To the best of our knowledge, this general regressio
problem (regressing data froRf* to R™) is not addressed in
the literature. Usual nonlinear regression techniquesessd
much simpler problems, where the target variable is scala
Spline regression may tackle this issue. But processingy eag
component of the data independently is precluded here be-
cause of the computational cost. Therefore, we process all
components jointly, using locally linear models. The pssbl

is then to label allkz;'s and to estimate the matrices corre-
sponding to the linear models (see algorithm 2).

An important feature of data reduction techniques and mani-
fold learning is the ability to project or to processd,, clas-
sify) an incoming point without running all computationerin
scratch. Formally, for a giveg,, we must determine the cor-
rllespondingci ande;.
For each linear moddW ;, a candidatéx;;, ;;) is com-

uted by mean squares. The variance associatdd jois
Esed to compute the likelihood af;. The maximum likeli-
ood estimate is retained (see algorithm 3).

Input: reduced coordinates, point labels and model
matrices
Output:

begin
for each linear model do
Input : original and reduced coordinates Compute corresponding reduced coordingtes;
Output: point labels and model matrices Map the r(_edu_ced_ coordinates on the manifold;
begin Compute its likelihood;
while exists a point whose neighbors are not end
labeled do Retain the label maximizing the likelihood;
Pick randomly a point whose neighbors are not end
labeled: Algorithm 3 : projection of a new point on the manifold
Compute the matri¥¥ regressing this
neighborhood? ;
Update all labels and update all matricgs 3. APPLICATION
Prune any model (labels and matrix) having too
few points(3); We apply our data reduction and regression methods to sev-
?or;dever remaining unlabeled point do eral standard data sets. Comparison with other methods is
Sea)r/ch through the neighborhood: &rgrp])ic;g%(?l. We also deal with projecting a new point on the
endASSIQn them to nearby planes Two types of data are analyzed, on the one hand, large sets
end of data (the Swiss Roll) of low extrinsic and intrinsic dimen

Algorithm 2 : piecewise linear regression

sions, and on the other hand, data sets having far fewergoint
but of high extrinsic dimension (the duck images, from the
COIL-20 [10] data sets).

Some details are needed for algorithm 2 :

@ LetY’; be the matrix consisting of aj}; that are neigh-

3.1. Datareduction

bors ofy, and X ; the corresponding matrix of alt;. Matrix  Our data reduction approach is compared to a standard method
W is estimated from the equatioi; ~ W X; by mean in the field, namely Isomap. To quantify the quality of the

squares.

data reduction step, true geodesic distances (computed ana

@ A point is assigned to a linear model if the norm of lytically) are compared to Euclidean distances in the reduc
the reconstruction error is less than a given factor times thspace. Comparison is achieved using correlation. Data are
standard deviation associated to the linear model. Once dhoise corrupted. Results show that our OCF behaves slightly
updates are completed, these variances are computed aghgiter than Isomap (see table 1).Parametisrset to the first
for all linear models and their assigned points. percentile of all distances on the manifold. Several rums ar

(® If a linear model has too few points, the matrix that

achieved to try to escape from local minima.

describes it cannot be computed. In this case, the lineaemod ]
is discarded. 3.2. Regression

(@ When no linear model can be added, some points mayo assess the quality of the regression, the samples used to
remain unassigned. In this case, they are assigned to #& lin learn the linear models are projected onto the approximated
model most represented in their neighborhood. manifold. Fig. 2 displays the result for the SwissRoll.



200 4. CONCLUSION AND FUTURE WORK

We have presented a comprehensive framework for learning a
nonlinear manifold and for projecting new points on this man
ifold. The framework is divided into two main steps, the first
being a dimensionality reduction process that enablesi{ear

23 4 ing reduced coordinates, and the second being a piecewise
(b) linear mapping of the manifold with the reduced coordinates
Fig. 2. SwissRoll regression. (a) regression of the SwissRoIIl,eadlng tq an efficient prOjectlo_n on the_mamfpld.

: : Work is in progress regarding manifolds linked to shape
(b) histogram of the norm of the reconstruction error . . : ;
representations. The ultimate goal of our study is learaimd)

classification of brain structures in medical images.

1

Noise Isomap| OCF

None 0.9997 | 0.9997
Gaus. 2.5%| 0.9988 | 0.9992
Exp. 0.3% | 0.9996 | 0.9997
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