
LOSSLESS COMPRESSION ALGORITHMS FOR POST-OPC IC LAYOUT

Allan Gu and Avideh Zakhor

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley, CA 94720, USA

ABSTRACT
An important step in today’s Integrated Circuit (IC) manu-
facturing is optical proximity correction (OPC). While OPC
increases the fidelity of pattern transfer to the wafer, it also
results in significant increase in IC layout file size. In this
paper, we develop two techniques for compressing post-OPC
layout data while remaining compliant with existing industry
standard data formats such as OASIS and GDSII. The moti-
vation for doing so is for the resulting compressed files to be
viewed and edited by any industry standard CAD tools with-
out a decoder. Our approach is to eliminate redundancies in
the representation of the geometric data by finding repeating
groups of polygons between multiple cells as well as within a
cell. We refer to the former as “inter-cell sub-cell detection”
and the later as “intra-cell sub-cell detection”. Both problems
are NP hard, and as such, we propose two sets of greedy al-
gorithms to solve them. We show the results of our proposed
inter-cell and intra-cell algorithms on actual 90nm, 130nm,
and 180nm IC layouts.

Index Terms— IC layout, compression, OPC, repeating
geometries

1. INTRODUCTION

As the semiconductor industry moves toward denser designs
with smaller feature sizes, pattern transfer from reticlesto
wafers, referred to as lithography, becomes more challenging.
To correctly fabricate these circuits using current lithographic
machines, Resolution Enhancement Techniques (RET) such
as optical proximity correction (OPC) are routinely performed
on the layout. Denser circuit design plus increased usage of
RET have resulted in significant explosion of layout data vol-
ume. Specifically, The International Technology Roadmap
for Semiconductors shows that the size of a single layer of an
uncompressed fractured layout is likely to exceed 400 Giga-
bytes in 2007 [1]. In particular, OPC is a major contributor
to the expansion of layout data volume. OPC destroys hier-
archical structures in layouts, and adds vertices to polygons
causing over10× increase in file size.

Layout data are commonly encoded using industry stan-
dard GDSII or OASIS binary file format. Both formats use the
BackusNaur Form metasyntax to express data records, which

1This work was supported jointly by SRC contract 2005-OC-460and
DARPA contract W911NF-04-1-0304.

describes the geometries created by IC designers. For exam-
ple, a record describing a polygon contains a list of vertices
and a 2D coordinate indicating the location of the polygon
with respect to some coordinate system.

There exist compression algorithms to reduce the mask
data size in the rasterized domain for direct write lithogra-
phy systems [2, 3]. There are also algorithms which can
be adapted to compress hierarchical IC layout data. Specifi-
cally, Chenet al. [4] have investigated algorithms to compress
dummy fills in IC layouts which exhibit high degree of spatial
regularity. Veltman and Ashida have proposed a compression
technique for E-Beam writers by finding a set of polygons
with identical repetitions [5].

In this paper, we propose two compression techniques to
reduce the layout data size. Our techniques guarantee that the
resulting compressed layouts remain compliant with GDSII
and OASIS, and can be read by any CAD tool without a de-
coder. Our approach is to eliminate redundancies in the rep-
resentation of the geometric data by finding repeating groups
of polygon between multiple cells as well as within a cell.
We refer to the former as “inter-cell sub-cell detection (Inter-
SCD)” and latter as “intra-cell sub-cell detection (IntraSCD)”.
Both problems are NP hard, and as such, we propose two sets
of greedy algorithms to solve them. Section 2 describes the
problem of finding repeating groups of geometries within a
cell and between multiple cells. In Section 3, we present our
algorithms to solve these two problems. Section 4 discusses
experimental results on industrial post-OPC layout data, and
compares the performance of the proposed algorithms with
GZIP.

2. SUB-CELL DETECTION PROBLEM
FORMULATION

We begin by defining few terminologies that are used through-
out the paper. We define rectangle, trapezoid, polygon, and
placement as geometries. A placement is a reference to a cell
in the layout, and associated with a placement is a transforma-
tion. A cell is a collection of geometries, and a sub-cell is a
subset of the geometries in a cell. Two geometries are equal if
they have the same list of vertices; for placements, they need
to reference the same cell and have the same transformation.
The compression ratio (CR) is the ratio of the size of the post-
OPC OASIS file to the size of its compressed version.

To appear inProc. ICIP 2007, September 16-19, 2007, San Antonio, Texas, USA

2.1. Intercell sub-cell detection
In OASIS, geometries are defined each time they occur in a
cell. If a group of three geometries is inN different cells,
then there are3N definitions of these geometries when only
3 definitions would suffice. By detecting this repeating group
of three geometries, it is possible to create a cell from them
which can then be referenced by each of theN cells with a
placement operator.

Intercell Sub-cell Detection Problem: Given m cells,
{C1, C2, ..., Cm}, find the sub-cell, (SCr), which maximizes
|SCr| ∗ r, for 2 ≤ r ≤ m.

A sub-cellSC is said to occur in a cellC if there exists a
transformationL that maps every geometry inSC to another
geometry inC. |SCr| denotes the number of geometries in
the sub-cell, andr is the number of cells thatSCr occurs in.
This problem is NP hard since it is a special case of the largest
common point set (LCP) problem [6].

2.2. Intracell sub-cell detection
RepresentingN instances of a geometry in OASIS requires
one geometry definition andN two dimensional coordinates.
Compression is achieved by finding a sub-cell which occurs
multiple times within the cell. For instance, 4 polygons oc-
curingN times in a cell would require 4 definitions and4N

coordinates to represent. Grouping the 4 polygons together
into a cell would only requireN coordinates rather than4N

coordinates.
Intracell Sub-cell Detection Problem: Given a cell,C,

find the sub-cellSCr which maximizes|SCr| ∗ r, for 2 ≤
r ≤ m, and the maximum Euclidean distance between any
two geometries inSCr is less than equal todist.

We restrict the maximum Euclidean distance between two
geometries because most circuit designs are created by con-
necting smaller functional circuits together, and the smaller
circuits are limited in size. A sub-cellSC occurring inr loca-
tions implies that there existr transformations,T1, T2, ..., Tr

such thatTi(SC) maps uniquely to a group of geometries in
C. m is the maximum number of geometries that are repeated
in C. This problem can be shown to be NP hard by a reduc-
tion from the 1-D LCP problem [7].

3. SUB-CELL DETECTION ALGORITHMS

InterSCD and IntraSCD are both NP hard problems, and can-
not be solved optimally within a reasonable time. In this
section, we describe two greedy algorithms to solve them.
The approach described in this paper only detects groups of
geometries that are translational invariant, but not rotational
invariant. We describe an extension to the IntraSCD algo-
rithm that addresses rotational invariance in [7]. Future re-
search will address rotational invariance of the InterSCD al-
gorithm.

3.1. Intercell sub-cell detection algorithm
Before detecting a common sub-cell among a large collection
of cells, we begin by grouping cells that may have a common

group of geometries using hierarchical clustering [7]. This
way, cells that do not share any geometries with other cells
are eliminated from further consideration.

Having obtained a collection of clusters through hierar-
chical clustering, we now find the sub-cell in each cluster
which maximizes|SCr| ∗ r, wherer is the number of cells
the sub-cell occurs in for that cluster, and|SCr| is the num-
ber of geometries that the sub-cellSCr contains. We start by
choosing two cells,Ci andCj , that are closest in terms of the
distance metric described in [7]. Exhaustive search is used
to find the largest sub-cell that is common to both cells under
translation [7]. The largest common group of geometries is
taken as the initial sub-cell if the number of geometries ex-
ceeds some threshold. Otherwise, another pair of cells whose
distance is the next closest are choosen. Once an initial sub-
cell, SC, is selected, we determine the distance betweenSC

and the rest of the cells in the cluster according to the dis-
tance metric described in [7]. The cell that is the closest to
SC is choosen, and exhaustive search is applied again to find
the largest sub-cellSCi that is common to bothSC and the
ith cell. Specifically, for theith cell we test to see whether
|SCi| ∗ i > |SC| ∗ (i− 1), and|SCi| ≥ threshold, in order
to setSC ← SCi. Otherwise, theith cell is removed from
the cluster and further consideration. This continues until all
of the cells within the cluster have been visited.

Figure 1 shows an example of how the above approach
works. After the hierarchical clustering step, cells A, B, C,
and D are assumed to be grouped together in a cluster. Cells
A and B are the closest with 6 geometries in common. We
then apply the exhaustive search to find the largest group of
geometries that occurs in cells A and B, and set it as the sub-
cell SC shown in Figure 1(b). Cell C andSC are the closest,
andSC2 shown in Figure 1(c) is the sub-cell with the most
number of shared geometries between cell C andSC. Finally
SC3 shown in Figure 1(d) is the sub-cell with the most num-
ber of shared geometries betweenSC2 and cell D. However,
SC3 is not used because|SC3| ∗ 4 = 12 which is not greater
than|SC2| ∗ 3 = 12.

3.2. Intracell sub-cell detection algorithm
We have developed a greedy algorithm that grows the sub-
cell at each iteration to solve the IntraSCD problem. The
basic idea behind the algorithm is to select an initial poly-
gon as an initial cell, and to add more polygons to the cell
until there is no additional benefit in adding more polygons.
At each step of the iteration, we choose the group of geome-
tries such that|SCi| ∗ numInsti is maximized, where|SCi|
is the number of geometries in the sub-cell at theith iter-
ation, andnumInsti is the number of instances ofSCi in
the cell. The algorithm stops adding more polygons when
|SCi| ∗ numInsti ≤ |SCi−1| ∗ numInsti−1.

The algorithm starts by ranking all the geometries accord-
ing to the number of instances of the geometry in the cell.
Then the geometry,Gmax, with the most number of instances

2

(a)

(b) (c) (d)

Fig. 1. Intercell sub-cell detection example. (a) Cell cluster;
(b) sub-cell of cell A, B; (c) sub-cell of SC, cell C; (d) sub-cell
of SC2 and cell D

is selected. For each instance ofGmax, all possible groups
of 2 or 3 geometries are created usingGmax and its neigh-
bors [7]. We select the most frequently occuring group of
2 or 3 geometries,SC, provided the number of instances of
that group is greater than some threshold. Additional geome-
tries are added to the group in order to determine whether it
is worthwhile to expand its size. We considerSC as a sin-
gle entity, and apply the same iteration step described above.
The algorithm stops adding more polygons on theith itera-
tion if |SCi| ∗ numInsti ≤ |SCi−1| ∗ numInsti−1. Once
the iteration has ended, a new cell containing the geometries
of SCi−1 is created and placements at all the locations in the
cell thatSCi−1 occurs at are created. The above process is
repeated until all of the geometries have been visited.

Figure 2 shows an example of running the IntraSCD algo-
rithm on a cell with 31 different geometries. Initially in Fig-
ure 2(a), we select the polygon with 5 instances calledSC0

and examine all its possible combinations of 2 and 3 geome-
tries. Figure 2(b) shows the group of three polygons that have
the most benefit among all the combinations after the1st it-
eration. Since|SC0| ∗ numInst0 < |SC1| ∗ numInst1,
we continue the iteration. At the end of the2nd iteration,
another polygon is added toSC1 resulting in a group of 4
polygons as shown in the top sub-cell in Figure 2(c) which
we call SC2. Figure 2(c) also shows two other groups of
geometries considered in the second iteration. However, these
groups only occur once in the cell and are not selected.SC2

with 4 geometries appearing on the top of Figure 2(c) is se-
lected because it is the one that maximizes|SC| ∗ numInst.
The iteration continues since(|SC2| ∗ numInst2 = 16) >

(|SC1| ∗ numInst1 = 12). On the third iteration, the al-
gorithm attempts to add more geometries toSC2. However
(|SC3| ∗ numInst3 = 7) < 16, and therefore the process
stops. Figure 2(d) shows the result at the end of the itera-
tions, where the resulting sub-cell has replaced the repeating
geometries in the cell.

(a) (b)

(c) (d)

Fig. 2. Intracell sub-cell detection example. (a)0th iteration;
(b) 1st iteration; (c)2nd iteration; (d) result

Table 1. InterSCD compression ratio. File sizes are in bytes.
Post-OPC Size InterSCD Size CR

Poly (L1) 6,391,097 2,793,277 2.288
Active (L1) 3,496,377 1,777,757 1.967

4. RESULTS

We apply the above InterSCD and IntraSCD algorithms on
actual industrial post-OPC layouts. The first data set consists
of the Poly and Active layers for a 3.5mm× 3.5mm chip with
180nm feature size. The OPC is done by the layout owner
with industry standard OPC software. The second data set
consists of the Poly, Metal 1, and Metal 2 layers from a 8mm
× 8mm and 4.3mm× 4.3mm chips with 130nm feature size.
The third data set consists of the Poly, and Active layers from
a 1.4mm× 1.4mm and 1.8mm× 1.8mm chips with 90nm
feature size. We performed OPC correction on the second
and third data sets with standard recipes using a different OPC
software from another major vendor.

We have found that for the 1st data set the InterSCD works
well, while applying IntraSCD does not result in noticeable
gain. We notice that many of the post-OPC cells from the
first layout data set are much smaller than those from the sec-
ond and third data sets. Therefore, IntraSCD, which detects
similar groups of polygons within a cell, does not result in
much gain on the first layout data set with small cells. Table 1
shows the InterSCD compressed file sizes in bytes encoded
in OASIS format for the first data set. As shown, the average
compression ratio is around 2X for the two layers.

Similarly, IntraSCD works well on the 2nd and 3rd data
sets, while InterSCD results in little gain. Table 2 shows the
results of applying IntraSCD on the second and third layout
data sets. The compression ratio ranges from 1.80 to 2.46

3

Table 2. IntraSCD compression ratio. File sizes are in bytes.
Post-OPC Size IntraSCD Size CR

Poly (L2a) 2,413,460 977,294 2.469
Poly (L2b) 1,036,664 576,491 1.798
Poly (L3a) 9,189,288 4,905,897 1.873
Poly (L3b) 34,515,762 18,960,928 1.820

Metal 1 (L2a) 2,490,423 1,791,495 1.390
Metal 1 (L2b) 1,194,192 1,060,746 1.126
Metal 2 (L2a) 1,444,367 1,143,360 1.263
Metal 2 (L2b) 947,981 775,561 1.222
Active (L3a) 9,666,584 6,899,025 1.401
Active (L3b) 35,945,586 23,209,262 1.549

Table 3. Comparing the CR of GZIP to InterSCD.
GZIP InterSCD InterSCD+GZIP
CR CR CR

Poly (L1) 7.789 2.288 8.987
Active (L1) 8.603 1.967 9.150

for the Poly layers, and 1.40 to 1.55 for the Active layers.
However, the compression ratio for the Metal layers is rather
low and in the range of 1.12 to 1.39. The Metal layers contain
many polygons with only a few instances. Naturally, if a poly-
gon,P , has few instances, then there are only few instances
of a group of polygons containingP .

GZIP [8], a popular lossless compression software, is com-
monly used to compress GDSII and OASIS layout files. Ta-
ble 3 compares the compression ratios of GZIP and InterSCD.
As seen in the2nd column of Table 3, GZIP performs well,
achieving a compression ratio of 8.6 for Active (L1). The
compression ratio of InterSCD shown in the3rd column of
Table 3 is lower than that of GZIP. This is expected since In-
terSCD compressed files are OASIS format compliant, and as
such, do not employ any entropy coding techniques. How-
ever, as shown in the4th column of Table 3, InterSCD files
can be further compressed by applying GZIP to them for situ-
ations in which OASIS compliancy is not important. As seen
in the4th column of Table 3, the compression ratio of Inter-
SCD follow by GZIP is higher than GZIP by itself.

GZIP also performs better than IntraSCD for layouts with
larger cells. However, as seen in the2nd and3rd columns of
Table 4, the compression ratio of IntraSCD is much closer to
the compression ratio of GZIP for larger post-OPC layout file
sizes such as Active(L3b) and Poly(L3a). Specfically, for the
largest layouts i.e. Layout 3b, the compression ratios are 1.55
and 1.77 for the Active layer, and 1.82 and 2.34 for the Poly
layer for IntraSCD and GZIP respectively. Similar to Inter-
SCD, IntraSCD compressesed files can be further processed
by GZIP to achieve better compression at expense of not be-
ing OASIS compliant. As expected, Column 4 of Table 4
shows the compression ratio of IntraSCD followed by GZIP
is higher than GZIP for all of the layouts, with the improve-
ments ranging from 42% to 76% for Layouts 3a and 3b.

Table 4. Comparing the CR of GZIP to IntraSCD.
GZIP IntraSCD IntraSCD+GZIP
CR CR CR

Poly (L2a) 4.972 2.470 6.187
Poly (L2b) 3.875 1.798 4.267
Poly (L3a) 2.531 1.873 4.447
Poly (L3b) 2.366 1.820 4.179

Metal 1 (L2a) 3.003 1.390 3.786
Metal 1 (L2b) 2.764 1.126 2.898
Metal 2 (L2a) 2.96 1.263 3.110
Metal 2 (L2b) 2.911 1.222 3.043
Active (L3a) 1.875 1.401 2.677
Active (L3b) 1.768 1.549 2.866

5. CONCLUSION AND FUTURE WORK

We have presented two lossless compression algorithms called
InterSCD and IntraSCD for post-OPC IC layout data. In addi-
tion to being lossless, the resulting compressed files are fully
compliant with industry format i.e. OASIS, which means
they can be viewed by any CAD editing tool without a de-
coder. The algorithms find redundancies in terms of repeating
geometries within a cell and between cells. We have extended
the IntraSCD algorithm in [7] to include rotational and reflec-
tional invariance resulting in 5 to 6 percent increase in com-
pression ratio for Layouts 3a and 3b. In addition, IntraSCD
algorithm can also be used to rediscover hierarchy in flattened
layout [7]. Future work involves applying the algorithms on
larger layouts, and extending InterSCD to handle rotations
and reflections.

6. REFERENCES

[1] “ITRS 2005 Edition, Lithography,” Available at
http://www.itrs.net/Common/2005ITRS/Litho2005.pdf.

[2] V. Dai and A. Zakhor, “Lossless compression of VLSI layout
image data,”IEEE Trans. on Image Processing, vol. 15, no. 9,
pp. 2522–2530, 2006.

[3] H. Liu, V. Dai, A. Zakhor, and B. Nikolic, “Reduced complex-
ity compression algorithms for direct-write maskless lithogra-
phy systems,” inProceedings of SPIE, Vol. 6151, Emerging
Lithographic Technologies X, 2006, pp. 632–645.

[4] Y. Chen, A. Kahng, G. Robins, A. Zelikovsky, and Y. Zheng,
“Compressible area fill synthesis.,”IEEE Trans. on CAD of In-
tegrated Circuits and Systems, vol. 24, pp. 1169–1187, 2005.

[5] R. Veltman and I. Ashida, “Geometrical library recognition for
mask data compression,” inProceedings of SPIE - Vol. 2793,
Photomask and X-Ray Mask Technology III, 1996, pp. 418–426.

[6] T. Akutsu and M. M. Halldorsson, “On the approximation of
largest common subtrees and largest common point sets,” in
Proceedings of the 5th International Symposium on Algorithms
and Computation, 1994.

[7] A. Gu and A. Zakhor, “Lossless compression algorithm for hi-
erarchical IC layout data,” inProceedings of SPIE - Vol. 6520,
Optical Lithography XX, 2007, pp. 652017–1 – 652017–17,
http://www-video.eecs.berkeley.edu/papers/agu/spie2007.pdf.

[8] P. Deutsch, “Gzip file format specification,” RFC 1952, May
1996.

4

