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ABSTRACT 

 
In this paper, we propose a learning-based demosaicing and 
a restoration error detection. A Vector Quantization (VQ)- 
based method is utilized for learning. We take advantage of 
a self-similarity in an image for a codebook generation in 
VQ. The mosaic image is interpolated via a traditional 
method, and applied scaling, blurring, phase-shifting and 
resampling are used to create a training data for the 
codebook. The characteristics of the training data are similar 
to those of an ideal image. Using such training data and 
approximation of an ideal codevector by a locally linear 
embedding (LLE)- based method increases the probability 
of finding a suitable codevector from the codebook. Even if 
we cannot find a good codevector in an ill-conditioned case, 
the error detection finds poorly estimated pixel values and 
replaces them with better restoration results by another 
demosaicing method. 
 
Index Terms— Vector quantization, Image reconstruction, 
Image resolution, 
 

1. INTRODUCTION 
 

Many methods have been proposed for Super-Resolution 
(SR) from a single low-resolution image. Recently, 
learning-based SR has become popular in this area [1, 2, 3, 
4]. These methods assume a model (Markov network, 
polynomial function, LLE, etc…). These models are trained 
by training data. In general, learning-based methods do not 
have a reasonable criterion for the selection of training data. 
No one knows what kind of images and how many images 
are sufficient for learning. To address this problem, we 
propose to utilize self-similarity of images. Image self-
similarity is well known for fractal image coding [5]. A 
natural image contains similar textures at different positions 
and scales. Such similarity is useful for image compression 
and inspires our method. In this paper, we describe Bayer 
demosaicing as an example of learning-based SR by self-
similarity. Fig. 1 is a model of our idea. Whatever 
demosaicing method we use, it cannot restore high 
frequency components perfectly from a mosaic image (Fig.1 

(a), (c)). In contrast, a low frequency component is restored 
well (Fig.1 (b), (d)). Therefore we can arrive at a similar 
texture for (a) from a scaled (d) (Fig. (a), (f)). Of course, an 
aliasing remains after scaling (Fig. 1 (e)). We use such a 
scaled image for a training data. If part of our training data 
contains the aliasing, a learning process removes it 
automatically, because the data is not ‘natural’ as in a 
natural image. 
 

 
        (a)          (b)           (c)          (d)           (e)          (f) 
 
Fig. 1. Part of a CZP chart. (a) and (b) are an original image 
at Nyquist frequency (Nf) and 1/2 Nf. (c) and (d) are 
restored images from a mosaic at Nf and 1/2 Nf by [6]. (e) 
and  (f) are scaled-down (1/2) images of (c) and (d).  
 
 Our method uses a VQ-based learning method similar to [3, 
4]. The training data is divided into small RGB patches and 
corresponding degraded mosaic patches are generated. To 
restore a given mosaic image, we divide it into small 
patches and compare them to those of the training data. We 
select similar mosaic patches from the training data and 
merge corresponding RGB patches to estimate RGB patches 
of the given mosaic image. Many learning-based SR 
methods apply a frequency band separation to their training 
data to compress a feature space.  In the Bayer demosaicing 
case, such band separation is not practical. An optical low-
pass filter used for a digital camera cannot sufficiently cut 
off a high frequency component, thus the captured mosaic 
image contains the aliasing and it makes the band separation 
difficult. Instead of band separation, the proposed method 
uses self-similarity to compress the feature space. 
 

2. PROPOSED METHOD 
 

Fig. 2 shows the framework of our algorithm, codebook 
generation, reconstruction, and error detection. 
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Fig. 2. The framework description of the proposed 
algorithm and detail of the scaling block. 
 
2.1. Codebook generation 
 
The codebook is generated from an interpolated image of a 
mosaic. For interpolation, any method can be used and we 
choose an adaptive color plane interpolation proposed by 
Hamilton and Adams [6]. The interpolated image is 
converted to various scaled, blurred and phase-shifted 
images at the scaling block in Fig. 2. These images are used 
for training data. The scaling block is a typical decimator. 
We control cutoff frequency at LPF. We also change 
sampling frequency and sampling phase at down sampler. 
The training data is resampled to create a mosaic image. In 
Bayer CFA case, there are four possible sampling patterns. 
Resampling block generates all possible patterns to 
increases phase-shift variation. The codevector in the 
codebook contains a small patch of training data (RGB 
patch c ) and the corresponding mosaic image (mosaic 
patch m ). c  and m are a vector representation of patches. 

mc,  denotes the codevector. The codebook must be 
divided for every CFA pattern of mosaic patch. A dense 
codebook is desirable to increase the probability of finding a 
close codevector. On the other hand, such a codebook takes 
a long time to search. Therefore, we propose that the given 
mosaic image should be divided into small regions. This is 
based on the assumption that similar texture distributes 
locally in the image. Every region has a 1/2 overlap with 
both adjacent regions. In addition, we use a tree-structured 
vector quantization (TSVQ) [7]. TSVQ creates a binary-
tree-structured codebook. The codebook is easy to traverse 
and maintains sufficient search accuracy. 
 
2.2. Reconstruction 
 

The codebook generation step creates several codebooks 
which correspond with divided regions and CFA patterns. 
To estimate unknown color values at a certain pixel p  in a 
given mosaic, a suitable codebook should be chosen. A 
local mosaic patch Lm  which includes p at a center 
position is compared to that of codevector, so the codebook 
must contain the same CFA pattern mosaic patch. In such 
codebooks, we chose the nearest codebook (Euclidian 
distance between p  and the center of region is closest). We 
define a distance d  between Lm  and mosaic patch in the 
codevector as L2 norm (eq. 1).  
 

CL mmd                          (1) 
 

where Cm  is the mosaic patch in codevector. Usually, there 
is no correct matching ( 0d ) codevector and so we look 
for several close codevectors to approximate an ideal one. 
We apply locally linear embedding (LLE) based 
approximation [4, 8]. LLE computes low-dimensional, 
neighborhood-preserving embeddings of high-dimensional 
inputs. LLE can recover a global nonlinear structure from 
locally linear fits. In our case, coefficients for a linear 
combination of mosaic patches in codevectors are computed 
to approximate Lm , then these coefficients are used for the 
corresponding RGB patch estimation. The approximation is 
achieved by minimizing an error between Lm and the linear 
combination of mosaic patches (eq. 2).  
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where cim  is a mosaic patch in i-th codevector. iw  is a 

coefficient for the linear combination of mosaic patches. iw  can 
compute by non negative least squares (NNLS) [9]. Ordinary least 
squares is not robust to outliers and sometimes computes large 
negative coefficients. This makes a bad RGB patch estimation, 
hence we introduce the constraint 0iw . RGB patch Lc  which 

correspond to Lm is estimated as follows (eq. 3). 
 

CiL cc
i

iw                           (3) 

 
where cic  is a RGB patch in the codevector. The center pixel in 

Lc  can be used as the estimated RGB pixel values at p . In 
addition to LLE-based method, we apply linear regression 
to refine the estimation result. The idea is the same as 
described in next section. A regression line is calculated from Lc . 
The unknown color values at p  are estimated by the known color 
value at p  and the regression line. 
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2.3. Error detection 
 
The existence of strong correlation between different color 
channels is well known. Fig. 3(a) shows a correlation 
between R and G channels at a tree region of campus image 
in Fig. 5. Every pixel value is normalized as [0,1] in this 
paper. In Fig. 3(a), a correlation coefficient is 0.994. The 
distribution of pixels at a local patch can be well 
approximated by a linear regression line (eq. 4). 
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where 1C , 2C  are one of RGB color values. 1CVar  is a 
variance of C1. 2,1 CCCov  is a covariance of 1C  and 2C . 

1CM , 2CM  are a mean of 1C  and 2C . The equation means, 
C2 can be estimated from C1 and statistics of C1 and C2. 
Fig. 3(b) shows an error of estimated pixel value by linear 
regression. As a whole, error is less than 1% of pixel value 
range, therefore, we can trust the estimation result. We take 
advantage of this characteristic for the restoration error 
detection. The process estimates the mosaic image from the 
restored image in reverse. For example, the color at a 
certain pixel in the mosaic is red, we estimate the pixel 
value from green and blue pixel values at the same pixel of 
the restored image. If the restored image is not ideal, the 
reconstructed mosaic image is different from the original 
one. The restoration error r  is defined as follows (eq. 5). 
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where mC1  is one of RGB color values at a certain pixel in 
the mosaic. 21CC , 31CC  are estimated values of 1C  by 2C  
and 3C  in the restored image. If  is close to 0, the 
restoration result has a high accuracy. 
  

 
  (a)                                            (b) 

 
Fig. 3 (a) Correlation between R and G channels. (b) Error 
of estimated pixel value calculated by six images in Fig. 5. 
Error bar shows 2  of error distribution. R G means that 
green pixel value is estimated from red pixel value. 

The proposed method makes use of two demosaicing 
methods. One is VQ-based method and the other is a 
traditional method. In both cases, restoration errors are 
calculated at every pixel and compared to each other. A 
simple way for combining two results is to select pixels that 
have smaller error. A binary mask can represent such 
selection. In our experiment, we applied blurring to the 
mask for a smooth blending (Fig. 7(d)). 
 

3. EXPERIMENTAL RESULTS 
 

 
 
Fig. 5. Part of the test image set. From left, church, 
restaurant, campus, newspaper, Macbeth chart, bicycle. 
 
We tested the proposed method on several images (Fig. 5). 
These images were captured by a SIGMA SD9 digital 
camera. The imager in the camera (FoveonX3) can capture 
the RGB image without any interpolation. We created 
mosaic images from these captured images.  
The input mosaic was divided into 256x256 pixel regions 

for the codebook generation. We used a 3x3 patch for the 
codevector to make the codebook small and dense. At 
scaling block in codebook generation step, we created 180 
variations of training data, 5 scaling variations (1/2 – 1/4), 4 
phase-shifting variations (sampled at ,0  in the x-y 
direction), 9 blurring variations (1/16Nf - 1/32Nf for 16 
times upscaled image).  
Fig. 6 shows the interpolation result of three different 

methods. Obviously, the proposed method achieves the best 
result. It can restore a high-resolution image and suppress a 
false color. Fig. 7 shows the effect of the error detection. 
The process blends two interpolation results, VQ-based 
result (c) and Hamilton and Adams result (d). The former 
does not have the false color, but it does have some artifacts 
around the edges, whereas the latter has the false color but a 
smooth edge. The blending result (b) and blend ratio (e) 
show that error detection selects better pixels from two 
results.  
Fig. 8 summarizes the accuracy of demosaicing results. We 

use root mean square error between an estimated image and 
an ideal one for evaluation. This describes the efficacy of 
error detection. Comparison between VQ-based method (b) 
and One codebook (c) shows that the codebook division 
works well. Common codebook (d) does not make use of 
self-similarity. (d) uses 30 randomly selected images to 
generate the codebook. The result shows the usefulness of 
self-similarity for the codebook generation. 
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(a) Ideal image                    (b) Proposed method 

 

      
   (c) Bicubic interpolation           (d) Hamilton and Adams 
 
Fig. 6. Interpolation results for three different methods. 
These images are a part of the church image in Fig. 5. 
 

     
(a) Ideal image                     (b) Blending result  

 

     
       (c) VQ-based result               (d) Hamilton and Adams 
 

 
(e)  Blend ratio 

 
Fig. 7 Blending result. (e): Pixels in the white region comes 
from the VQ-based result and the other comes from 
Hamilton and Adams. These images are a part of the 
restaurant image in Fig. 5. 

Church Restaurant RMSE 
(x10-3) R G B R G B 

(a) Proposed method 4.03 2.84 4.09 6.16 3.81 6.14
(b) VQ-based method 4.77 3.43 4.97 9.33 6.28 8.56
(c ) One codebook 5.89 4.26 6.04 9.94 6.70 8.78
(d) Common codebook 9.67 7.45 11.7 18.7 12.9 17.5
       
(e) Hamilton and Adams 5.03 4.14 5.39 6.43 4.18 8.04
(f) Bicubic 17.9 9.20 17.1 

 

19.7 9.22 16.2
 
Fig. 8. RMSE comparison. Only (a) uses error detection. (b) 
is the same as (a) except for error detection. (c) uses just one 
codebook generated by a whole region of  input mosaic 
image. (d) uses a common codebook generated by 30 
randomly selected images. (e) and (f) are the results of 
traditional methods. 
 

4. CONCLUSION 
 

We developed a VQ-based demosaicing method and  an 
effective error detection method.  Our proposed method 
utilizes the self-similarity in an image for the codebook 
generation in VQ. This idea improves codebook quality 
significantly. Furthermore, the error detection method 
removes an artifact that arises from the VQ-based method 
and yields a fine demosaicing result. 
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