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ABSTRACT

The area of non-intrusive forensic analysis has found many applica-
tions in the area of digital imaging. One unexplored area is the iden-
tification of source coding in digital images. In other words, given a
digital image, can we identify which compression scheme was used,
if any? This paper focuses on the aspect of transform coder clas-
sification, where we wish to determine which transform was used
during compression. This scheme analyzes the histograms of coef-
ficient subbands to determine the nature of the transform method.
By obtaining the distance between the obtained histogram and the
estimate of the original histogram, we can determine if the image
was compressed using the transform tested. Results show that this
method can successfully classify compression by transform as well
as detect whether any compression has occurred at all in an image.

Index Terms— Image and video forensics, image coding, source
coding, transform coding, pattern classification.

1. INTRODUCTION

Non-intrusive forensic analysis is a relatively new research area which
provides methods for extracting information from an output signal
when the input (host) signal is unavailable. In the context of digital
images, we use non-intrusive forensic analysis to identify operations
such as blurring, sharpening, resizing, rotation, luminance adjust-
ment, gamma correction, and more. Non-intrusive forensic analysis
differs from traditional approaches to multimedia security — cryp-
tography, video scrambling, watermarking, channel coding, etc. —
which protect content using additive operations. For example, water-
marking embeds a signal imperceptibly such that the additive signal
is robust and traceable. In order to add the watermark, we require
access to the original host signal. Similarly, with channel coding,
we inject redundancy into a source in order to make it more robust
in the presence of channel transmission errors. However, in many
scenarios, we may not even have access to the host signal, and there-
fore we cannot enforce protection through any extrinsic means. With
non-intrusive forensic analysis, the forensic analyst only has access
to an output signal in a raw format, without any header informa-
tion or metadata. Past operations performed upon the signal leave
artifacts which become an intrinsic part of the signal, much like a
fingerprint. We can analyze these artifacts to identify the history of
operations.

Existing work in non-intrusive forensics for digital images pri-
marily focuses on areas such as forgery detection, parameter estima-
tion, image classification, and component forensics. In this paper,
we address a new problem: the identification of source coding in
images. In other words, given a previously-compressed image con-
verted back into a raw format, what source coding scheme was used,
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or to what family of coders does it belong? What transform method,
if any, was used? Discrete cosine transform (DCT)? Discrete wavelet
transform (DWT)? Other? What wavelet basis was used, if any? Fi-
nally, how confident is our estimate?

Identification of source coding components and parameters has
many applications in multimedia security, coding, and communica-
tion, especially when we lack access to the original signal or the
device. One typical application of non-intrusive forensic analysis
involves patent infringement. Often we wish to determine the spe-
cific encoding mechanism used within a broad category of source
coders to detect potential patent infringement. This service is es-
sential for detecting infringement in software and hardware products
that are distributed for profit. By analyzing the artifacts that lossy
coders leave behind, we can tell which coder was used along with its
parameters.

Another application involves the verification of digital image in-
tegrity. The integrity of a digital image’s content is of paramount im-
portance in many forensic scenarios. The Scientific Working Group
on Imaging Technologies — part of the International Association for
Identification, an organization devoted to forensic science — cites po-
tential legal ramifications regarding the use of image compression
[1], which is often an unavoidable step in the image acquisition pro-
cess. For example, the compression history of an image may become
relevant in judicial proceedings, since one could argue that compres-
sion artifacts had obscured relevant information. Unfortunately, the
compression algorithm and settings may not be immediately obvi-
ous, especially if performed automatically as a result of the acqui-
sition device (e.g. compression in digital cameras). In this case, is
there any way to determine the compression algorithm? This infor-
mation is critical in subsequent quantitative image analysis, where
the use of image compression can degrade the accuracy of object
measurements. Such inaccuracies could lead to an incorrect diag-
nosis from a medical image, or an incorrect statement of guilt re-
garding a subject involved in a crime as viewed by a surveillance
camera. Through non-intrusive forensic analysis, we can identify
the nature of the compression module in the absence of the origi-
nal image, thereby offering some measure of confidence regarding
subsequent image analysis.

The first step in our forensic methodology for source coder iden-
tification involves the detection of pre-processing, namely block pro-
cessing, which we address in an earlier work [2]. By estimating the
block size, we identify the minimal unit upon which quantization is
performed. In this paper, we address the next step in our methodol-
ogy: classification of the transform method. (For our purposes, we
restrict our discussion to those source coders which are most com-
monly used in practice, namely transform coders.) First, we will ex-
amine the nature of artifacts caused by a variety of transform coders.
By discriminating amongst these artifacts, we can identify which
source coder was used. Next, we present our method for transform
coder classification, followed by results and a discussion.



2. TRANSFORM COEFFICIENT CHARACTERISTICS

The main approach taken by a non-intrusive forensic system is the
analysis of artifacts produced by the processing modules, and there-
fore we must first find the artifacts’ source in transform coders.

In conducting non-intrusive forensic analysis, we must ask our-
selves the following fundamental question. For each source coder,
where, and in what domain, does loss occur? Consider the generic
transform coder in Fig. 1 consisting of a 2-D transform, quantizer,
and entropy coder. We see here that loss occurs during quantization
and after the transform. Therefore, in order to conduct our forensic
analysis, we must repeat the transform to return to the stage where
loss occurs and examine the effect of quantization on transform co-
efficients.

Orlglnalg’ Transform ——» Quantization ——» Entropy
Image Encoding
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Bitstream
Reconstructed Inverse Inverse Entropy
Image Transform Quantization Decoding

Fig. 1. Generic transform coding for digital images.

First, consider a DCT block coder. During quantization, the
DCT coefficients are discretized. During inverse quantization, the
quantized coefficients are multiplied by the quantization step size.
As aresult, we expect to find peaks in the histogram at multiples of
the step size and zeros elsewhere. However, as noted by Fan and
de Queiroz [3], due to the truncation and rounding effects caused
during reconstruction, the histogram peaks do not appear as perfect
impulses, as shown in Fig. 2.

Next, consider an embedded DWT coder. In an embedded ze-
rotree coder such as EZW or SPIHT, the values of the transform
coefficients are progressively transmitted by bit plane. Each embed-
ded coder has its own algorithm for deciding the order in which the
zerotree is traversed and the coefficients are transmitted. Since the
coefficient values are bit-plane encoded, the transform coefficient
histogram of the previously-compressed image will contain peaks
at the designated reconstruction values. However, these reconstruc-
tion values are not spaced evenly, therefore the DWT coefficient his-
togram peaks are not periodic like that of the DCT. As with DCT
block coding, rounding and truncation errors will add small imper-
fections to these histogram peaks. Fig. 2 shows the coefficient his-
togram at frequency (0,1) of a JPEG-coded image with quality factor
of 70 and the coefficient histogram at the level-4 LH subband of a
SPIHT-coded image with a bit rate of 1.0 bit per pixel.

How can we relate the generation of artifacts in DCT coding
with that of embedded DWT coding? We can draw some insight
from Xiong et. al. [4], which mentions that in a DCT block coder,
each 8-by-8 block of transform coefficients can be treated as a 64-
subband decomposition of the original 8-by-8 image block. In other
words, we can treat the entire set of (0,0) coefficients as one sub-
band, we treat all (0,1) coefficients as another subband, and so on.
After tiling all of these subbands together, we obtain a coefficient
subband representation similar to the one shown in Fig. 3. In this
figure, a discrete cosine transformation with block size of 4 was ap-
plied to the image Lena. All of the DCT coefficients of the same
frequency are combined into one subband, and these subbands are
tiled together. The subband histograms are shown as well. There-
fore, we can state that for both types of transforms, if we perform the
appropriate subband decomposition and then observe the histogram
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Fig. 2. Example coefficient histograms of two images previously
compressed with different schemes. Left: DCT coefficient his-
togram of position (0,1) after JPEG decoding. Right: Wavelet coef-
ficient histogram of the level-4 LH subband after SPIHT decoding.
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Fig. 3. Left: Reorganization of DCT coefficients into subbands.
Right: Histograms for each coefficient subband.

within each subband, we should find histogram peaks. In fact, we
can even apply the same concept to JPEG2000 images which have
been coded using tiling. JPEG2000 allows the use of optional tile
sizes of almost any size; subsequent coefficient transformation and
quantization is performed on each tile separately. Nevertheless, if
we obtain the wavelet coefficient subbands from each tile and then
reorganize them as mentioned earlier, we arrive at a single coherent
wavelet decomposition! This unifying concept shall become useful
when formulating a transform classification scheme.

3. TRANSFORM METHOD CLASSIFICATION

Having discussed a major difference between the transform coef-
ficient histograms of compressed and umcompressed images — the
presence of histogram peaks — we would like to characterize this dif-
ference, perhaps using some sort of distance metric. In other words,
after computing the histograms of transform coefficients, how sim-
ilar are these histograms to the ideal transform coefficient histograms
for a compressed or uncompressed image? Here, we propose a method
which discriminates amongst coefficient histograms produced by dif-
ferent source coders, thereby achieving classification and identifica-
tion of the compression scheme.

Unfortunately, to do this, we need the exact coefficient histogram
before quantization, which is irretrievable. However, we can approx-
imate the original coefficient histogram using a least-squares approx-
imation. Research has previously shown that the histograms of DCT
coefficients and wavelet coefficients are both accurately modeled us-
ing a generalized Gaussian distribution [5] [6] [7]. Therefore, let



Fig. 4. Coefficient histogram from an uncompressed image, along
with the nonlinear least-squares curve fit.

pi(k) be the probability mass function of the original coefficients
within a subband, modeled as follows for simplicity:

pi(k) = yexp(Alk[") M

where ¢ is the index of the subband, ~ is a normalization constant,
A < 0, and v is the same exponent found in the generalized Gaus-
sian distribution. One simple way to estimate the original coefficient
histogram is through linear least squares. By taking the logarithm of
pi(k), we can construct an over-determined linear system of equa-
tions, and we can solve for log« and A using the normal equations.
When computing this least-squares solution, one may choose any
suitable value for . For example, by fixing v = 1, we find the best
fit to the Laplacian distribution.

Using linear least-squares to obtain a best fit for any exponential-
based distribution is ill-advised, particularly due to sensitivity. Small
perturbations in the histogram will yield widely different solutions.
Furthermore, we are constrained to fixing v constant, so we cannot
really obtain the best fit for the generalized Gaussian distribution.
To overcome these problems, we will use a nonlinear least-squares
method to obtain the best fit. The optimization problem is formu-
lated as follows:

ming . S (k) = 7 exp(AK]))? o
s.t. ¥>0,A<0,r>0

There are many numerical optimization methods to solve this sort of
problem. We use a modified Newton method [8] which calculates
the Newton direction using a modified Hessian which approaches
the true Hessian, and we use a backtracking line search. Further-
more, we incorporate the linear equality constraints on -, A, and
v into the optimization problem by using the log-barrier function.
Additional bounds on these variables is suggested and can be incor-
porated through additional barrier functions. This method of expo-
nential curve fitting is relatively fast and offers a very high-quality
model of coefficient histograms. Fig. 4 illustrates the performance
of this estimate for an AC coefficient histogram with a bin width of
0.5 from an uncompressed image transformed using the DCT.

Now we can assess how well the histogram of inverse-quantized
coefficients matches the least-squares estimate of the original his-
togram. With these two histograms, we can employ a probability-
based distance metric. Let p; (k) be the histogram of the coefficients
in subband ¢ from the reconstructed image. Consider the relative en-
tropy, or Kullback-Leibler divergence, between the two distributions
p(k) and p(k).

p(k)
D(pllp) = Zp Jog 5 3)

This distance metric, though not a proper distance metric in the strict
sense, has a nice interpretation in our source coder identification
problem. Intuitively, the relative entropy represents the extra number
of bits required to encode a source with distribution p when provided
a code for distribution p [9].
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Therefore, if D(p||p) is low, then that indicates that the minimum
number of bits required to represent C (4, 7) is close to the number
of bits required to represent C'(7, j). In other words, the image which
we are testing is most likely uncompressed. If D(p||p) is high, then
C(i,7) can be represented with far fewer bits then C(4, 5), and the
tested image is most likely compressed. We compute D(p||p) for all
coefficient subbands for which sufficient information exists (i.e. not
completely quantized to zero). Our final distance metric is the me-
dian of all of these relative entropy values in the case of block trans-
forms, or a weighted mean in the case of wavelet transforms. For
the wavelet transform, we weight the relative entropy value for each
subband by the size of the subband before averaging. This weight-
ing guarantees equal contributions from all frequencies in the final
distance measure.

The complete transform method identification algorithm is sum-
marized as follows.

1. Choose a transform to test (e.g. DCT, Hadamard, DWT with
Haar basis, etc.). Transform the image. Obtain the subband
representation of the coefficients.

2. For each coefficient subband, obtain the histogram. (If insuf-
ficient information exists, move on to the next subband.)

3. Approximate the histogram of the original, unquantized coef-
ficients using nonlinear least-squares estimation.

4. Calculate the relative entropy between the observed and the
approximated original histogram.

5. Take the median value (for block transforms) or weighted
mean (for wavelet transforms) of the relative entropies from
all subbands for which sufficient information exists. This
value is the final distance measure. If this value is high, then
the transform method tested is the one used during compres-
sion.

4. RESULTS

First, we show the effectiveness of our method in discriminating be-
tween images which have been previously compressed versus im-
ages which have not been compressed at all. In Fig. 5, the four
starred plots show the distance measure for four different images
which have been compressed using JPEG (i.e. a DCT with block
size of 8) for quality factors between 20 and 97. The four circled
plots at the bottom represent the distance measure for images which
have not undergone any compression at all, and therefore they do not
change as a function of the quality factor. Note how there is a clear
distinction between the two sets of lines, even for a quality factor
as high as 97. This separation is achieved thanks to the quality of
the nonlinear least-squares estimate of the original coefficient his-
tograms. When least-squares estimation tries to approximate a his-
togram of coefficients from a previously-compressed image using a
generalized Gaussian distribution, the curve fit will be poor and the
KL divergence value will be high.
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Fig. 5. Median relative entropy as a function of quality factor for
four images when compression is present and absent.

|| DCT  Hadamard  Slant | 53 97  17/11

DCT 2198 109 1631 | 0.160 0.159 0.148
Hadamard || 0.745 2208 1619 | 0274 0.158 0.147
Slant 2805 1563 2249 | 0212 0154 0.156
513 0.147 0091  0.137 | 4099 0.664 0.402
977 0.174 0081  0.123 | 0.784 4186 1902
17/11 0.191 0081  0.120 | 0454 1.869 4.216

Table 1. Distance measures for six transforms, averaged over seven
images. Rows headers indicate the true transform. Column headers
indicate the tested transform. Values greater than 2.0 are highlighted.

Next, to illustrate the effectiveness of transform classification,
we show a matrix of distance measures for various transforms av-
eraged over seven standard test images. In Table 1, each row rep-
resents the true transform which was used during compression, and
each column represents the transform for which the image is being
tested. There are six transforms represented in total. The three block
transforms — DCT, Hadamard, and slant — use a block size of 8, and
baseline JPEG is used for quantization with a quality factor of 60.
The three wavelet transforms — 5/3, 9/7, and 17/11 — use the stan-
dard five-level multiresolution decomposition, and SPIHT is used for
quantization with a bit rate of 0.8 bits per pixel. Other quantization
methods, such as the embedded block coding in JPEG2000, natu-
rally produce similar results because histogram peaks remain present
regardless of the quantization method.

In most cases, a high degree of separability is found between
correct transform classification and incorrect classification. In par-
ticular, we see that classifying a block transform as a wavelet trans-
form is very unlikely, and vice versa. Differentiating among the
wavelet transforms is also successful as seen from the high level of
separability among the distance measures. Differentiating among the
block transforms is also successful, however the separability level
among the distance measures is lower. One notable result from Table
1 is that many images which were compressed using a slant trans-
form were classified as transformed using the DCT. This result is
interesting, and in fact, it illuminates a key similarity between the
two transforms. In particular, the transform matrices for the DCT
and slant transforms similar in nature when the basis vectors are se-
quency ordered. In other words, if D; is the transform matrix for
the DCT, and D5 is the sequency-ordered transform matrix for the
slant transform, then DT D, is approximately equal to the identity
matrix. Through this result, this scheme has illuminated an impor-
tant, yet obscure, similarity by classifying these two transforms into
one category, thus achieving the primary purpose of classification.

5. CONCLUSION

We have proposed a non-intrusive forensic procedure to classify the
transform method used during compression in digital images. Given
an image, which may or may not have been compressed using a
transform coder, this method first obtains a subband representation
of the transform coefficients. For each subband, the histogram of
the original, unquantized transform coefficients is estimated using a
nonlinear least-squares method. This numerical optimization method
results in a high-quality curve fit for the generalized Gaussian distri-
bution, unlike the linear least-squares method which must fix the
exponent in the generalized Gaussian distribution and is more sensi-
tive to perturbations in the input data. After calculating the relative
entropy between the obtained histogram and the estimated original
histogram for each subband, we arrive at a final distance measure; if
this measure is high, then we classify the transform tested as being
the true transform used during compression. As shown in the results,
this method succeeds in distinguishing between images which have
been previously compressed and those which have not. More impor-
tantly, this method succeeds in classifying the transform used during
compression among six different transforms.

This entire process fits into a broader scheme for source coder
identification, a new research topic which involves non-intrusive foren-
sic analysis for digital images. The ultimate goal is an identification
system which can determine the exact details of the compression
method used (if any) upon a digital image. The benefits of such a
system are significant, including the detection of patent infringement
and verification of digital image integrity. Also, information gath-
ered from a source coder identification system can potentially im-
prove existing methods used in image quality assessment, rate con-
trol, and image restoration. As research in this area progresses, we
believe that even more uses for a source coder identification system,
and non-intrusive forensic analysis in general, will become apparent.
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