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ABSTRACT 

The bag-of-words approach has become increasingly 
attractive in the fields of object category recognition and 
scene classification, witnessed by some successful 
applications [5, 7, 11]. Its basic idea is to quantize an image 
using visual terms and exploit the image-level statistics for 
classification. However, the previous work still lacks the 
capability of modeling the spatial dependency and the 
correspondence between patches and object parts. 
Moreover, quantization always deteriorates the descriptive 
power of the patch feature. This paper proposes the hidden 
maximum entropy (HME) approach for modeling the object 
category. Each object is modeled by the parts, each having a 
Gaussian distribution. The spatial dependency and image-
level statistics of parts are modeled through the maximum 
entropy approach. The model is learned by an EM-IIS 
(Expectation maximum embedded with improved iterative 
scaling) algorithm. Our experiments on the Caltech 101 
dataset show that the relative reduction of equal error rate of 
23.5% and relative improvement of AUC (area under ROC) 
of 22.0% are obtained when comparing the HME based 
system with the ME based baseline system. 

1. INTRODUCTION 

The bag-of-words approach is commonly adopted in text 
information retrieval: a text document is represented using 
the word occurrence [3]. Although the method ignores 
syntactic or semantic information, its success has been 
proven in text categorization and retrieval. Recently, the 
bag-of-words has attracted attention in the community of 
image related pattern recognition such as scene 
classification [2], object recognition (e.g. [5, 7, 11]), etc. 
However, unlike text document, image document is not 
symbolic. The clustering algorithms (e.g. k-means) have to 
be firstly employed to quantize the image. A high-
dimensional feature vector is then extracted. Finally, 
machine learning algorithms such as support vector machine 
[5], translation model [7], maximum entropy (ME) [1], MC 
MFoM [10], probabilistic latent semantic analysis [2], are 
applied for classification.  

The bag-of-words could easily make use of image-level 
statistics. The quantities, e.g., unigram and bigram of visual 
terms, are invariant to rotation and are robust to partially 
occlusion. This is the main reason for its success in object 

recognition. However, it still lacks the capability of 
modeling the spatial dependency and the correspondence 
between patches and object parts which are demanded in 
some applications (e.g. object localization). In addition, 
quantization also results in the loss of some discriminative 
information in continuous visual features. Such loss is not 
recoverable regardless of how powerful the object model is. 

To discover the correspondence between the patches 
and object parts, the generative object model has been 
developed [6, 8, 12], where each object has a few parts and 
each part is modeled by a Gaussian distribution. The 
correspondence is hidden and is learned using the EM 
algorithm. Such modeling is feasible to integrate the 
appearance, shape and local spatial dependency. But it also 
fails in capturing the image-level statistics of parts.  

In the paper, the hidden maximum entropy (HME) 
approach is presented for modeling object categories aiming 
to obtain the joint benefits from both the bag-of-words 
approach and generative model. The HME model has some 
parts, each being a Gaussian distribution, which connect the 
patch feature with the discrete symbols, i.e., parts. The part 
configuration in the image and their interaction are also 
modeled through the ME model. Since the correspondence 
is hidden, a feasible EM-IIS algorithm, i.e., EM embedded 
with improved iterative scaling (IIS), is developed for 
learning. Note that the HME directly characterizes the 
distributions of the patch feature and part configuration. 
Therefore quantization is not necessary. When the 
correspondence is deterministic and the object categories 
share the visual parts, the HME would become the ME. 
Section 3 will detail more on it. 

The paper is organized as the following. In the next 
section, the ME is introduced. Then the HME model is 
presented. The experiments are reported in Section 4. 
Finally, conclusion is made in Section 5.  

2. MAXIMUM ENTROPY MODEL 

The maximum entropy model has been successfully applied 
to the text document [1]. However, the natural image 
representation consists of a set of patch features (e.g., color, 
texture, etc.). Thus, we have to “convert” image into a text-
like (i.e., symbolic) document. The first step is to learn 
visual terms using the clustering algorithms such as k-
means. Then a patch is quantized into its closest term based 



on its distance with the centers of visual terms. Quantization 
finally makes an image document to be a symbolic 
document so that any technique (including feature 
extraction and modeling algorithms) developed for text 
categorization and retrieval can be applied. Among all 
proposed approaches, the ME model is promising because 
of its capability to fuse diverse features.  

Assuming there are M object categories and a training 
set, ( ){ },t tT I y= , where ( ),t tI y  is an image tI  and its 

label,
ty , then M object models should be trained for M-

class classification. We denote the extracted visual features 
as, ( ) ( ) ( )( )1 , 2 , ,t t t t tI x x x L= L , where ( ).tx is a D-

dimensional vector and tL is the number of vectors. After 
quantization using K visual terms, the image is represented 
as, ( ) ( ) ( )( )1 , 2 , ,t t t t tI q q q L= L , where ( )tq ⋅ is a visual term 

quantized for ( ).tx . 

2.1. Maximum Entropy Model 

To make a decision, the predicted probability of an 
object, ( ),P y I θ , is calculated, where y is the object 

category, I is the symbolized image and θ  is the model 
parameters. Then the image is assigned to the object, *y , 
which gives the maximal predicted probability, i.e., 

[ ]
( )*

1,
max ,
y M

y P y I θ
∈

=     (1) 

     Assuming N feature extractors, ( ),if I y , are designed to 

extract informative features, then the ME model can be 
estimated by maximizing the empirical maximum entropy in 
the training set under a set of constraints. These constraints 
describe that the empirical quantity of each feature must be 
equal to its predicted value by the learned model. This 
results in the following form of the object category model 
(Refer to [1] for details). 
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, i ii

P y I f I y
Z I

θ λ
θ

= ⋅∑      (2), 

where ( ) ( )( ), exp ,i iy i
Z I f I yθ λ= ⋅∑ ∑ , { }1 2, , , Nθ λ λ λ= L . In 

the paper, the unigram feature is used, 
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             (3), 

where q is a visual term, c is an object category and I  is 

the occurrence number of all terms in I. Now the feature 
extractor is indexed by both q and c. Eq. (3) implies each 
object model in Eq. (2) has its own distinct parameters. 
    The model parameters can be obtained by maximizing the 
log-likelihood in the training set. Usually the generalized 
iterative scaling (GIS) or IIS algorithm is employed for 
efficient estimation [1]. 

2.2. Limitation Analysis of ME 

With carefully designed feature extractors, the ME based 
object model could capture the image-level statistics of 
visual terms which are invariant to rotation and are robust to 
partially occlusion. However, the spatial dependency is not 
characterized. It cannot answer the correspondence due to 
the image-level representation. Moreover, unavoidable 
quantization error cannot be recovered by the following 
process. Further, the bag-of-words description limits the 
utilization of patch features. For instance, currently only the 
appearance feature is used to generate the visual terms. It is 
therefore challenging to incorporate the shape model 
because the shape model needs the spatial configuration of 
object parts.  
    In next section, we will introduce the hidden maximum 
entropy approach to address all these issues. The proposed 
method takes learning visual terms and estimating the 
correspondence as a hidden stage. The HME model then 
jointly characterizes the distribution of patch features and 
part configuration.  

3. HIDDEN MAXIMUM ENTROPY BASED OBJECT 
CATEGORY MODELING 

The bag-of-words based image concept models consist of a 
universal visual term models to map the patches in the 
image to their closest visual terms as well as a concept 
dependent model to characterize the image-level statistics of 
the symbolized image. In the HME model, each object has 
some parts, which generate the observed visual patch 
feature, and the distribution of the part configuration is 
characterized by the ME model. The correspondence 
between the object parts and the image patches are the 
hidden random variable. 

3.1. Hidden Maximum Entropy 

For the image patch 
representation, ( ) ( ) ( )( )1 , 2 , ,I x x x L= L , and the object 

category model, there is a hidden random variable, 
( ) ( ) ( )( )1 , 2 , ,H h h h L= L , to describe the mapping between 

the object parts and the patches. Here ( )h i is one of K parts. 

Thus the log-likelihood for predicting the object category y 
is calculated through summing all possible mappings, i.e., 

( )( ) ( )log , log , ,
H

P y I P y H Iθ θ= ∑      (4). 

    For the K-parts object model and L-patches image, there 
will be LK  correspondences. Thus, the computation cost for 
the above sum calculation is very huge. Even it is possible, 
there is another challenge to find a computable function for 
the joint distribution of object category and hidden variable, 
i.e., ( ), ,P y H I θ . So we have to seek an approximate 

computational model so that the cost can be reduced.  
According to the Bayesian rule and Jensen’s inequality, 

we can factorize the joint distribution in Eq. (4) and find its 
lower bound,  
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     (5). 

The sum in the second line in Eq. (5) is the lower bound of 
Eq. (4). We would rather compute the lower-bound to 
approximate the log-likelihood in Eq. (4), i.e,  

( )( ) ( ) ( )( )log , , log ,
H

P y I P H I P y Hθ θ θ≈∑   (6). 

The two terms in the equation defines the HME based 
object category model. In the next we will finish their 
definitions. 

The first term in the RHS is the probability of one 
mapping configuration given the observed visual features. It 
is computed from the visual features. The second term 
explains how much the object category y is generated for a 
fixed configuration. When the two terms are given, the 
object category model is determined. 

The first term bridges the object model with the low-
level patch features. For simplicity, here the patches are 
assumed independent and the spatial dependency is not 
considered. Thus the identity of each patch will be predicted 
by itself observed patch feature. The probability of a 
mapping configuration can be factorized as, 

( ) ( ) ( )( ), ,
i

P H I P h i x iθ θ=∏        (7), 

where ( ) ( )( ),P h i x i θ  is a probability measure of the i-th 

patch belonging to h(i)-th part. In the paper, a Gaussian 
distribution is used to model the object part. For an object 
category y with K parts, the part models are denoted 
as, ( ),y y y

j j jp N x µ= ∑ , [ ]1,j K∈ , [ ]1,y M∈ . The probability 

of the i-th patch assigned to the j-th part is approximated as, 

( ) ( )( ) ( )( ) ( )( )( )1 ,y y y
j j jP h i j x i P N x i

Z x i

η
µ= = ⋅ ∑  (8), 

where ( )( ) ( )( )( ),y y y
k k kk

Z x i P N x i
η

µ= ⋅ ∑∑ , y
kP is a prior 

probability of the j-th part for the object y, and η is a 
smoothing constant.  
    Up to now, the first part definition has been defined. Now 
we will complete the definition of the second part. There are 
many ways to model the conditional probability for a fixed 
mapping configuration. Here the ME model (see Section 2) 
is applied to account for the features in the mapping. For a 
possible mapping, the feature detectors (see Eq. (3)) are 
used to extract feature and calculate the conditional 
probability.  

The complete HME model has the parameters for the 
part generative model and the weights of feature extractors 
in the ME, i.e., y

kP , y
jµ , y

j∑ , nλ . They will be learned through 

maximizing the log-likelihood on the training set. The 
objective function is defined as, 

( ) ( ) ( ) ( )
( ) ( ) ( )

,
, , ,

            , log ,

i iI y H i

I H

T P I y P H I f H y

P I P H I Z H
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θ θ

Γ =

−
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∑ ∑

%

%
 (9), 

where ( ),P I y% and ( )P I%  are the empirical distributions. 

3.2. Estimating Model Parameters 

The feature extractors used in the ME are a linear function 
of the part occurrences for a fixed mapping and it can be 
summed over all patches. Then the sum in the first line in 
Eq. (9) can be efficiently computed due to the independence 
of patches. However, the sum in the second line is still 
difficult due to the non-linear term, ( )log ,Z H θ . We will 

further approximate Eq. (9) for efficient computation. It is 
noted that 

( ) ( )log , 1 ,Z H Z Hθ θ− ≥ −   (10), 

and,                ( ) ( ) ( ),
, expi

iy i

f H y
Z H f

f
θ λ≤ ⋅∑ ∑     (11), 

where ( ),ii
f f H y=∑ . It is a constant here. 

    Substituting Eqs. (10-11) into Eq. (9) will result in a new 
lower bound, which is a linear function over all parts and 
patches. The EM-IIS algorithm is used for learning the 
parameters. In the E-step, the ME parameters are fixed and 
we maximize the objective function to estimate the 
parameters of the part models, i.e., y

kP , y
jµ and y

j∑ . In the M-

step, the IIS algorithm is used to learn the weights of feature 
extractors, nλ , while others are fixed. Because of the 
normalized feature extractors in Eq. (3), a closed solution 
can be found. The proof is skipped due to the limited space.   

4. EXPERIMENTAL RESULTS AND ANALYSIS 

The HME based object model can be applied to multi-
category classification. In the paper we will demonstrate its 
power on the object detection. We will train the HME based 
object models to discriminate the image containing the 
object from the background image. Because of its relation 
with ME, the ME model is trained as the benchmark [11].  

4.2. Experimental Setup 

The Caltech-101 database is used for evaluation, which 
contains 101 object categories plus 1 background category. 
There are totally 9,144 images, ~40 to 800 images per 
category and ~50 for most categories [12]. We select 15 
images, whose numbers are from 1 to 15, per category for 
training without any intention. Thus 1,530 images are 
reserved for training and all the left are used for testing. All 
images are resized so that its maximal dimension is not 
more than 300 pixels. The SIFT detector is used to extract a 
set of patches, each being a 128-dimensional appearance 
feature vector [4]. 

For the bag-of-words based ME model, 4 visual terms 
are learned using the k-means clustering. As a fair 
comparison, the HME model also has 4 visual parts shared 
by the object and the background model. The setting makes 
the two systems have the same size of parameters. Better 



results should be gotten with more parts, however, it is not 
our intention here. 

4.3. Experimental Results 

The two metrics are used to evaluate the detection, i.e., the 
average equal error rate (EER) over the 101 categories and 
average AUC (area under the ROC. see [9]). The latter is a 
one-scale quantity of ROC curve and measures how much 
probability the positive-negative image pair are correctly 
ranked.  

 The average EER is 33.6% for the HME models while it 
is 43.9% for the ME. Thus HME gives rise to 23.5% 
reduction of the average EER. The concept-by-concept 
analysis shows that HME improves the detection 
performance among 87 categories out of the 101 categories, 
there are 11 categories whose performances become worse, 
and others have no change. When measured with the AUC 
metric, we observe that (1) HME increases the average 
AUC, 58.2%, for ME to 71.0% and (2) HME is better than 
ME among 96 categories, 4 categories becoming worse. 
Therefore, the HME model outperforms ME significantly. 

Top-10 representative patches Weights 
(Object/Background)

Object 

-0.58/-0.82 
-0.94/-0.50 
-1.4/-0.28 

 -0.38/-1.15 

Car_side
 

HME 

-0.46/0.43 
-0.73/0.66 
-0.56/0.51 
2.00/-2.86 

ME 

-1.02/-0.45 
-1.53/-0.25 
-0.31/-1.32 
-0.33/-1.28 

Schooner
 

HME 

-2.33/1.56 
-1.92/1.25 
1.70/-3.08 

 1.71/-2.88 

ME 

Figure 1 Top-10 representative patches of part models and 
weights of the object (first value) and background models 
(second value) for the two selected categories car_side and 
schooner. 

4.3. Illustration of Learned Visual Parts 

Now we visualize the part models learned from HME and k-
means clustering for two selected object categories. One is 
car_side on which HME is better than ME (EER: 38.0% vs. 
46.4%) and another is schooner on which HME is worse 
(ERR: 25.0% vs. 22.1%). For each part model, the top-10 
training patches closest to the part center are chosen as its 
representative and are cropped from the corresponding 
image based on its location and scale. Then they are resized 
to 11x11 pixels.  

The top representative patches are depicted in Figure 1. 
The first column is the image listing representative patches. 
Each image has 4 rows corresponding to 4 part models for 

each object category and model. The second column is the 
learned weights of feature extractors in ME for the object 
and background models (see Eq. (2)), the first value for the 
object and the second for the background. The value 
measures the importance degree of part to the model. The 
part having higher value is more representative than that 
with lower value. For example, for car_side model learned 
with HME, the forth and first parts are representative 
patterns of car_side while the other two are background 
patterns. These images clearly show the distinct patterns of 
the object and background. The background patterns learned 
with HME is more consistent than ME, i.e., it has fewer 
object patterns in its top-10, even for schooner on which 
ME operates better.     

5. CONCLUSION 

This paper presents the HME-based object category model 
to integrate the good properties of ME model and the 
generative model. It captures not only the image-level 
statistics of the object parts but also the local characteristics 
of the patches through the generative model. The proposed 
method is evaluated on the object detection for 101 object 
categories. Compared with the ME, 23.5% relative 
reduction of EER is obtained and the AUC relative 
improvement reaches 22.0%. In future, we shall study the 
effect of class-specific parts (here they are shared) and 
segmentation based on the mapping, and the improved 
algorithm for reducing computation. 
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