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ABSTRACT 

In relevance feedback, active learning is often used to 
alleviate the burden of labeling by selecting only the most 
informative data. Traditional data selection strategies often 
choose the data closest to the current classification boundary 
to label, which are in fact not informative enough. In this 
paper, we propose the Moving Virtual Boundary (MVB) 
strategy, which is proved to be a more effective way for data 
selection. The Co-SVM algorithm is another powerful 
method used in relevance feedback. Unfortunately, its basic 
assumption that each view of the data be sufficient is often 
untenable in image retrieval. We present our Weighted 
Co-SVM as an extension of Co-SVM by attaching weight to 
each view, and thus relax the view sufficiency assumption. 
The experimental results show that the Weighted Co-SVM 
algorithm outperforms Co-SVM obviously, especially with 
the help of MVB data selection strategy. 

Index Terms— Image retrieval, Relevance feedback, Active 
learning, Multi-view learning, Support vector machine 

1. INTRODUCTION 

Relevance feedback is an important method to improve the 
performance of image retrieval systems. In each round of 
feedback, only a small number of images in the huge image 
database are labeled. How to utilize both the limited labeled 
images and the abundant unlabeled images, and conduct 
effective relevance feedback has been studied for years. 

Active learning is a machine learning method used for 
effective labeling. Its key idea is choosing the “most 
informative” data so that knowing the labels of them can 
greatly boost the performance of the classifier. The selected 
data will then be labeled and added to the training set to 
retrain the classifier. This procedure can be repeated, and 
the goal is to label as little data as possible to achieve a 
certain performance. Specifically in the field of image 
retrieval, Tong and Chang [1] proposed an active learning 
algorithm, named SVMActive. They consider the images 
closest to their current separating hyperplane to be the most 
informative data. Therefore, in each round of relevance 
feedback, they select the images closest to the current SVM 
boundary to label, and retrained a new classifier that better 
separates the images relevant to user’s query from the rest. 

Multi-view learning is another useful learning method 
using the large amount of unlabeled data to augment 
classification performance. It is often applied to problems 
with redundant views. The main idea of multi-view learning 
is that the same data set can be classified from different 
views, so classifiers with each single view can be trained 
separately. Then all predictions on the unlabeled data set can 
be put together to improve the performance of each other. 
Most multi-view learning algorithms, such as co-training [2], 
co-testing [3], etc., are proposed on the assumption that each 
view is sufficient for learning. 

In order to combine the merits of active learning and 
multi-view learning, Cheng and Wang [4] presented their 
algorithm, named Co-SVM, for image retrieval. They also 
assume that different features representing an image are 
sufficient. In their algorithm, SVM classifiers are firstly 
learnt with different features separately, and then contention 
data on which the classifiers disagree are picked out. Finally, 
the contention data close to boundaries in all views are 
returned to users for labeling. 

In this paper, we indicate that traditional data selection 
strategies which simply select the data closest to the current 
classification boundary are not effective enough. We 
propose a novel informative data selection strategy, the 
Moving Virtual Boundary (MVB) strategy, which uses the 
label of current selected data as guidance for the selection of 
next data. Then, on the basis of Co-SVM, we present our 
multi-view active learning algorithm, Weighted Co-SVM. 
We introduce weights into Co-SVM to relax the view 
sufficiency assumption which often fails in image retrieval, 
and thus achieve better classification performance. 

2. MOVING VIRTUAL BOUNDARY STRATEGY 

As mentioned above, the key point with active learning is to 
find out a way to choose the most informative data for 
labeling. Traditionally, as in SVMActive and Co-SVM, the 
data closest to the current trained separating hyperplane are 
simply chosen as the most informative ones. 

However, as illustrated in Fig. 1, the data closest to the 
current classification boundary are not always the most 
informative data, and sometimes they can be of little help to 
improve the performance of the classifier, especially when 
the current classifier is quite different from the optimal one. 
In fact, the data closest to the optimal classifier, rather than 
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the current trained classifier, are the most informative data. 
Unfortunately, we have totally no idea where the optimal 
classification boundary lies when selecting data. 

In this paper, we propose the Moving Virtual Boundary 
(MVB) strategy for informative data selection in relevance 
feedback, which is described in Fig. 2. Different from the 
traditional strategy which selects a batch of data at a time 
and labels them all together, our MVB strategy selects data 
one by one, using the label of the current selected data to 
guide the selection of the next one (Fig. 3). 

The main idea of MVB strategy is to construct a virtual 
classification boundary moving from the current trained 
boundary towards the optimal one, and in the meantime 
select the data closest to the virtual boundary to be labeled. 
As the virtual boundary moving closer to the optimal 
boundary, the labeled data are also converging to the most 
informative data near the optimal boundary. 

In every repeat of Step 2 in the MVB strategy, only one 
single data with the smallest distance to the virtual boundary 
is labeled, and after each labeling, whether the virtual 
boundary should move or stay is decided by the labeled data. 
If the data is correctly classified by the virtual classifier, we 
call it a “not-very-informative data”, because it offers little 
information about whether the virtual boundary is correct 
and where the optimal boundary lies. In this situation, we 
keep the virtual boundary where it was. If the data’s label 
does not agree with its classification result according to the 
virtual classifier, it means that the virtual boundary is not 
correct and should move to a better position. For example, if 
a data xl is classified positive by the virtual classifier but 
labeled negative, it means that the optimal classification 
boundary lies on the positive side of the virtual boundary, so 
we move the virtual boundary in that direction. 

According to the moving step length of the virtual 
boundary, we can divide the MVB strategy into a naive one 
and a fast one. In the naive MVB strategy, the virtual 
boundary simply moves to the middle of the labeled data 
and its neighbor in the moving direction. In the fast MVB 
strategy, we define the “unknown space”, Sunknown, as the 
range of “signed distance” among which the class labels of 

the data are totally unknown. Here, the signed distance 
means the distance between a data and the current boundary 
with a sign (“ ” or “ ”) to indicate the data’s class. 
Initially, as we know nothing about the unlabeled data set 
before the first labeling, we set the unknown space to be 
Sunknown = (-Maxnegative , Maxpositive), where the Maxnegative and 
Maxpositive represent the largest distance of the data on the 
negative and positive side respectively. Every time a 
wrongly classified data is detected, the range of the Sunknown 
is changed, and the virtual boundary moves to the position 
where the new Sunknown is halved. To illustrate, if a data xl is 
classified negative but labeled positive, we claim that most 
data on the positive side of xl are also positive, so we change 
the initial unknown space into S’unknown = (-Maxnegative , h(xl)), 
where h(xl) is the signed distance of xl . Then we move the 
virtual boundary to the middle of S’unknown, which divides it 
in half. With larger step length, the fast MVB moves much 
faster than the naive one, so that the selected data converge 
to the most informative data in fewer steps. 

Our MVB strategy is a generic data selection strategy, 
and can be used in most machine learning algorithms with 
selective sampling. 

3. WEIGHTED CO-SVM 

Most multi-view learning algorithms are based on the 

 

Input:  The current trained classifier h, the training data 
set Dt , the unlabeled data set Du and the number of data to 
be labeled Nl in a single round of relevance feedback. 
Step1. Classify Du with h, and initialize the virtual 
boundary (classifier) hv to be the current boundary h. 
Step2. Repeat the following procedure for Nl times: 
(1) Select the data closest to the virtual boundary to be 

classified by hv and labeled, supposing it is xl . 
(2) If xl is classified positive but labeled negative, move 

the virtual boundary in the positive direction; 
If xl is classified negative but labeled positive, move 
the virtual boundary in the negative direction; 
Otherwise, the virtual boundary stays where it was. 

(3) Add xl to Dt and remove it from Du . 
Step3. Train a new classifier h’ using Dt . 

 

Fig. 2. The Moving Virtual Boundary (MVB) strategy. 

Fig. 1. The data closest to the current classification 
boundary is not so informative as those in gray since they 
are quite far from the optimal classification boundary. 
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Fig. 3. Traditional strategy vs. MVB strategy. 
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assumption that different views of data are sufficient for 
learning. In other words, all views are equally important. 
For example, in Co-SVM, they claim that features, such as 
color, texture, etc., are all sufficient views of an image, and 
defined the confidence degree as follows to reflect the 
consistency of all classifiers with different views: 

 
1

( ) sign ( )
k

i
i

D x h x , 

where k is the number of features (k ≥ 2) and hi corresponds 
to the classifier trained solely with the ith feature. As can be 
seen from the formula above, each classifier’s contribution 
to D(x) is the same.  

However, Yan and Naphade [5] pointed out that the 
view sufficiency assumption often fails in semantic concept 
classification, and different views are not necessarily of the 
same importance. So it is not appropriate to simply put 
together different single-view classifiers. 

In this paper, we introduce weights into Co-SVM to 
represent different importance of different features, and 
propose our Weighted Co-SVM algorithm. 

As illustrated in Fig. 4, the Weighted Co-SVM starts 
with building a training set by labeling the l most similar 
images with all features. Then, in the first step of the repeat 
in Step 2, m most relevant images classified by a SVM 
classifier with all features are also labeled and added to the 
training set. The purpose is to provide the following SVM 
classifiers with enough positive data (i.e., relevant images), 
because in a large image database the number of irrelevant 
images is always much larger than that of relevant images. 
If we choose images randomly instead, we will most 
probably get few positive data, which makes it very hard to 
train robust classifiers in the following steps. 

After we have trained k SVM classifiers with k 
corresponding features separately, we combine them into a 
much stronger classifier: 

 
1

k

i i
i

H w h . 

With the aid of the validation data set Dv , the Weighted 
Co-SVM algorithm decides the importance of each feature 
by examining how much benefit can be achieved from each 
single hi , and calculates the weight wi accordingly. There 
are many ways to get wi for each hi . A simple choice is 
using each single classifier hi to classify Dv , and regarding 
the classification accuracy as its combination weight wi . 

At the end of the repeat in Step 2 of Weighted Co-SVM, 
we select n images for labeling, and we can use both the 
traditional strategy and the novel MVB strategy proposed 
above. If we use the MVB strategy here, we set the input as: 
classifier h = H, training set Dt , unlabeled set Du and the 
number of data to be labeled Nl = n. 

After several rounds of feedback, the classifier H is 
well trained and strong enough. At last, the most relevant 
images are returned. 

Our Weighted Co-SVM algorithm can be regarded as 
the extension of Co-SVM in situation where the view 

sufficiency assumption fails. 

4. EXPERIMENTS 

Our experiments are performed on a subset selected from 
the Corel image CDs. In our subset, there are 50 categories 
with different semantic meanings, such as tiger, car, flag, etc. 
Each category contains 100 images, so there are altogether 
5000 images. In the experiments, the first 10 images of each 
category, 500 in all, are picked out as query images to test 
the retrieval performance of different algorithms. We 
employ color and texture features to represent images. The 
color features consist of 125-dimensional color histogram 
and 6-dimensional color moment in RGB. The texture 
features are extracted using 3-level discrete wavelet 
transformation, and the mean and variance averaging on 
each of 10 sub-bands form a 20-dimensional vector. All the 
SVM classifiers in our experiments use the same RBF 
kernel. In each round of relevance feedback, we label the 
same amount of images selected by different algorithms. All 
the accuracy is the average accuracy over all the test images. 

Our experiments consist of two parts as follows: 

4.1. Comparison of Data Selection Strategies 

Firstly, we compare our MVB strategy (both naive and fast) 
with the traditional data selection strategy which simply 
chooses the data closest to the current classification 
boundary. To provide a fair comparison, we apply the three 
data selection strategies to Tong and Chang’s SVMActive. 

Fig. 5 shows the accuracy vs. scope curves of SVMActive 
algorithm with the three different data selection strategies, 
where scope = x means the accuracy is calculated within the 
top-x returned images. Fig. 6 depicts the curves of top-30 
accuracy vs. feedback rounds. The figures indicate that our 
MVB strategies consistently outperform the traditional 

 

Input:  The query image q, the validation data set Dv , the 
training data set Dt ( ), the unlabeled data set Du and the 
entire feature space V=V1 V2 … Vk (k ≥ 2). 
Step 1. Rank the data in Du in descending order of 
similarity to q with entire feature V. Label the top l images. 
Add the labeled images to Dt and remove them from Du . 
Step 2. Repeat the following procedure until the user is 
satisfied with the result: 
(1) Train a SVM classifier h with entire feature V using Dt 

and classify Du . Label the top m images with the 
highest h(x). Add the labeled images to Dt and remove 
them from Du . 

(2) Train SVM classifiers h1, h2,…, hk separately with each 
single feature V1, V2,…, Vk using Dt and classify Du . 

(3) Combine h1, h2,…, hk into = ∑ ℎ=1 , using Dv to 
determine the combination weights wi . 

(4) Select n informative images to label. Add the labeled 
images to Dt and remove them from Du . 

Step 3. Return the images most relevant to q. 
 

Fig. 4. The Weighted Co-SVM algorithm. 
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strategy, and within the MVB strategies, the fast one 
performs even better than the naive one. 

4.2. Comparison of Learning Algorithms 

In order to validate the effectiveness of our Weighted 
Co-SVM algorithm (with and without MVB strategy), we 
compare it with Co-SVM and SVMActive as well as the 
traditional relevance feedback algorithm using SVM. Here 
we use the 131-dimensional color feature and the 
20-dimensional texture feature as two views in both 
Weighted Co-SVM and Co-SVM. 

As illustrated in Fig. 7 and Fig. 8, our Weighted 
Co-SVM achieves the best performance. Especially when 
we apply the MVB strategy (fast) in data selection, the 
performance can be further improved remarkably, which 
demonstrates that data selection plays a critical role in 
learning algorithms. 

5. CONCLUSIONS 

In this paper, we have proposed a novel generic data 
selection strategy, the MVB strategy, for learning 
algorithms with selective sampling. With the help of a 
virtual boundary moving towards the optimal classification 
boundary, we make the selected data gradually come near to 
the most informative data. Experimental results show that, 
the data selected by our strategy are much more informative 
than those by the traditional strategy. Then we improved the 
Co-SVM algorithm by giving weight to each view according 

to its importance. As the experiments reveal, our Weighted 
Co-SVM, especially when using MVB strategy, achieves 
obvious improvement compared with Co-SVM, SVMActive 
and traditional algorithms without active learning. 
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Fig. 8. The top 30 accuracy of image retrieval 
 

Fig. 7. The accuracy of image retrieval with 5 feedbacks Fig. 5. The accuracy of image retrieval with 5 feedbacks 

Fig. 6. The top 30 accuracy of image retrieval 

IV - 520


