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ABSTRACT

In this paper we focus on scene classification and detection
of high-level concepts within multimedia documents, by in-
troducing an intermediate contextual approach as a means of
exploiting the visual context of images. More specifically, we
introduce and model a novel relational knowledge representa-
tion, founded on topological and semantic relations between
the concepts of an image. We further develop an algorithm
to address computationally efficient handling of visual con-
text and extraction of mid-level region characteristics. Based
on the proposed knowledge model, we combine the notion
of visual context with region semantics, in order to exploit
their efficacy in dealing with scene classification problems.
Finally, initial experimental results are presented, in order to
demonstrate possible applications of the proposed methodol-

ogy.
Index Terms— scene classification, concept detection,
visual context, region semantics

1. INTRODUCTION

Visual context [7] forms a rather classical approach to con-
text, tackling it from the scope of environmental or physical
parameters that are evident in multimedia applications. The
discussed knowledge representation supports all visual infor-
mation inherent in images. Our research objective deals with
the, so called, visual context analysis, i.e. the way to take
into account the extracted/recognized concepts during con-
tent analysis in order to identify the specific context, express
it in a structural description form, and use it for improving or
continuing the content analysis, indexing and searching pro-
cedures. In the following, we shall refer to the term visual
context, by interpreting it as all information related to the vi-
sual scene content of a still image that may be useful during
its analysis phase.

Visual context is strongly related to scene classification,
one of the main problems of image analysis. Scene classifica-
tion forms a fop-down approach, where typically low-level vi-
sual features are employed to globally analyze the scene con-
tent and classify it in one of a number of predefined categories
(e.g. indoor/outdoor, city/landscape). For instance, detection

of a green region below an azure region in an image might
imply an outdoor field scenery, or taking this a step further,
detection of a building in the middle of an image might imply
a city scene with higher probability.

An important step towards semantically analyzed and op-
timized results is to automate the process of semantic feature
extraction and annotation of multimedia content objects, by
enhancing image classification with semantic characteristics.
Utilizing semantics in the form of detection of semantic fea-
tures in still images or video sequences has been the ultimate
task in earlier and current multimedia research efforts ([5],
[12], [3]). Many approaches have been proposed, all shar-
ing the common target and finally extracting high-level con-
cepts from raw content. For instance, in [6], a multi-modal
machine learning technique is used in order to model seman-
tic concepts within video sequences. Region-based research
approaches in content-based retrieval, like the one presented
in [9] and which uses Latent Semantic Analysis (LSA), are
common in the field. Moreover, a lexicon-driven approach is
introduced in [4]. Finally, a mean-shift algorithm is used in
[8], in order to extract low-level concepts, after the image is
clustered.

So far and to the best of our knowledge, none of the cur-
rent research efforts utilizes the herein proposed context in
any form. This tends to be the main drawback of individual
object and scene detectors, since they only examine isolated
strips of pure object materials, without taking into consid-
eration the context of the scene or individual objects them-
selves. This remark is very important and at the same time
extremely challenging even for human observers. The notion
of visual context is able to aid in the direction of scene clas-
sification methodologies, simulating the human approach to
similar problems.

The structure of this paper is as follows: In Section 2,
we present the proposed novel fuzzy knowledge representa-
tion, including some basic notation used throughout the pa-
per. Section 3 is dedicated to the proposed contextual adap-
tation in terms of visual context algorithm optimization steps.
Section 4 lists some preliminary experimental results derived
from two different beach datasets and Section 5 concludes



briefly our work.

2. KNOWLEDGE REPRESENTATION

In principle, any kind of relation (semantic, topological, tem-
poral, spatiotemporal) may be represented by an ontology
[11]. However, herein we restrict the utilized relations’ types
to topological and semantic ones, as the latter are the most
suitable relations to describe multimedia content. Based on
these kinds of relations, we introduce a novel knowledge rep-
resentation, package it in the form of a contextual ontology
and utilize it, in order to semantically enhance the multime-
dia analysis process. The aforementioned relations are intro-
duced in order to express in an optimal way the real-world re-
lationships that exist between each image’s participating con-
cepts. In order for this ontology type to be highly descriptive,
it must contain a representative number of distinct and even
diverse relations among concepts, so as to scatter information
among them and thus describe their context in a rather mean-
ingful way. The utilized relations need to be meaningfully
defined and even combined, so as to provide a view of the
knowledge that suffices for context definition and estimation.

Additionally, since modelling of real-life information is
usually governed by uncertainty and ambiguity, it is our belief
that these relations must incorporate fuzziness in their defini-
tion. In the following we incorporate a rather classical subset
of topological: { adjacent, inside, above, below, left, right},
as well as semantic: {similarity, part, specification} and co-
occurrence relations among high-level concepts. While the
notion of the first set of topological relations is straightfor-
ward, the second set of semantic relations is derived from the
MPEG-7 semantic relations set [2], suitable for image analy-
sis. We define both types of relations in a way to exploit and
represent fuzziness, i.e. a degree of confidence is associated
to each relation.

2.1. Relations among high-level concepts

To begin, we define some fundamental sets, necessary for the
definition of more specific sets and relations. More specifi-
cally, let C be the set of all high-level concepts, P be the set
of all images of the training set and S be the set of all regions
of all images. Within each image p, we define:

o C ={c}, p=1,2,...,N. be the set of all high-
level concepts within the domain(s) of interest. The
high-level concepts are determined by a domain expert.
An applicable subset of all these possible concepts is
selected from the ontology user/developer.

o S={s,}, p=1,2,..., N, be the set of all regions
(segments), of all images, as extracted by a specific seg-
mentation tool.

e O, = {4}, k=1,2,...,NP, p € P, be the set of
all high-level concepts present in image p. As obvious,

Cp C C. () is determined by the provided annotation
for the training set of images.

e D, ={d}}, k=1,2,...,N%, p € P, be the set of
all initial detector values of image p. The initial de-
tector values of an image result from the application of
appropriate high-level feature detectors.

Letting R; (e1,e2) be a binary relation between concepts ¢;
and ¢y and Rs (cq, ¢2) be the opposite relation (e.g. “above”
is the opposite relation of “below”), we define the inverse re-
lation as: R™1: R1_1 (c1,¢2) = Ry (c2,c1) and the opposite
relation as: =R: =R (¢1,¢2) = Rz (c1,¢2). The cardinality
of a set is denoted by | - |.

2.1.1. Semantic relations

In order to acquire a meaningful set of semantic relations
suitable for image analysis problems, we extend a subset of
the well-known MPEG-7 semantic relations [2] and re-define
them in a way to represent fuzziness, i.e. a degree of confi-
dence is associated to each relation. Let sem denote any con-
sidered semantic relation between any given pair of concepts
defined by an expert:

RI™ = {rjf’g; s Ty = sem(ci,¢2), c1,c2 €C (1)

As already indicated, sem belongs to one of either three pos-
sible semantic relation types defined within the MPEG-7 stan-
dard, namely: sem € {sim, part, spec}. The first one, sim,
denotes the semantic Similarity amongst any pair of concepts
(e.g. automobile/car), part is the MPEG-7 PartOf seman-
tic relation (e.g. Sydney/Australia) and spec is the Special-
ization relation between high-level concepts c; and co (e.g.
cowlanimal).

2.1.2. Topological relations

Apart from the above presented semantic relations, in order
to fine-tune the analysis process, we also define utilize a set
of fuzzy topological relations. Thus, let fop denote any topo-
logical relation between any given concepts ¢; and co:

R ={re,} = {top(cr, )}, et €C ()
where top € {adj,ins, ab,bel,left, rgt}. Each one of these
six relations is explained in the Table 1:

Finally, a very important relation to be taken into consid-
eration is the co-occurence relation, which is defined statisti-
cally on the training set data. We define:

Rgz = {T(C:f7c2} = {CO(Clv 62)}7 C1,C2 S C (3)

where:

|[{peP:c1eCrNhcaeCpl}|
= 4
coler ) = e piacvacty| P




Table 1. Proposed fuzzy topological relations.
Name Symbol Properties
adjacent adj adj (c1,c2) = adj~t (c1,ca)
inside  ins ins (c1,c2) # ins™t (c1,ca)
ab(c1,co) # ab™t (c1,c2)
—ab (c1,c2) = bel (c1, ¢2)
bel (c1,c2) # bel =t (1, ca)
—bel (¢1,¢2) = ab (e, c2)
left(c1,c2) # left=t (c1,ca)
nleft(c1, c2) =rgt(cy,ca)
rgt (c1,c0) # rgt—1 (c1,c2)
—rgt (c1,c2) = left(c1,c2)

above ab
below  bel
left left

above rgt

2.1.3. Knowledge formalization

All the above knowledge may be integrated into a single,
“fuzzified” version of an ontology described by O:

i7Fj )

where C represents the set of all high-level concepts, P be
the set of all images of the training set and S be the set of all
regions of all images and

O={C,P,.8Re,c;}, Hj=1,...m,

Rci,C]‘ == F(Rci,c]') = {Rzgm7 Rigpﬂ Rgg (6)

denotes a fuzzy relation amongst two concepts ¢;, ¢;.
A meaningful combination of these relations

ZCi,Cj = (U Rci,cjpij)v Dij € {_17071} (7)
2,7

may then be used to form the abstract contextual knowledge
model formed herein and ready to be used during the analysis
phase. The value of p;; is determined by the semantics of
each relation R, .; used in the construction of Z, ... More
specifically:

e p;; = 1, if the semantics of R, ., imply it should be
considered as is

e p;; = —1, if the semantics of R, ., imply its inverse
should be considered

e p;; = 0, if the semantics of R, ., do not allow its par-
ticipation in the construction of the combined relation
Zeicie

3. EMPLOYING VISUAL CONTEXT

In the following, we introduce an entity-based methodology,
founded on the knowledge representation presented in the
previous Section 2. We utilize a set of semantic concepts of
the image, as well as the set of the fuzzy relations Z between
them. The core functionality of the visual context algorithm
is the meaningful interpretation of the initial concept de-
tectors’ confidence values d., € D, associated to a region

sp € S of an image. These initial values may be obtained
from any kind of image segmentation and analysis module.
The novelty introduced herein deals with the extraction of the
contextualized value of each detector f.,, based on the fuzzy
contextual relationships 2., ., € [0, 1] evident in the image
and the domain of interest. In other words, the concept’s
context refers to the overall relevance of each concept to the
related domain, as well as the rest of the concepts that are
present in the image under consideration.

The general structure of the proposed algorithm for the
simplified case of one image (i.e. we omit the P index) is as
follows.

1. For each available concept ¢; € Cp, @ = 1...1N,
obtain its initial concept detector value d., € D,. N,
is the cardinality of set C'.

2. For each concept c;, obtain its fuzzy relationships
Ze,e; € [0,1] to any other concept ¢; in the knowl-
edge, where j =1...Noand Z, ., = 1.

3. Calculate the contextualized concept detector value f,
of each concept c;, using the function:

fCi = (dci7tcz‘)
where:

t _ Zc#cj dcj 'chj
C; -
Zci?écj de

It is worth noting that this function incorporates both
globally available (d.,) and locally available (i.e.
within the particular image under consideration) (t.,)
information in the calculation of f.,. In case the confi-
dence of the initial concept detector is extremely high
or low, contextualization of the value is not taken into
consideration, i.e. if d., = {0,1} = f., = d.,.,
whereas for d., = 0.5 = f., =t.,.

4. We use the linear combination:

fcq, = h(dm) : th‘, + (1 - h(d(‘7)) ! d(‘7

to express the calculation of the new value f.,, where
h(d.,) represents the triangular function

de, = tri(x)

I R FH
o

The above algorithm extracts the underlying contextual
knowledge and estimates the contextualized value of the con-
cept detectors f,, based on the fuzzy contextual relationships
Z., ., and the initial concept detectors’ confidence values de,,
associated to the regions s, € S of the image.

0<x<1

otherwise



Fig. 1. Representative Images

4. RESULTS

In this section we provide experimental results of the pro-
posed algorithm. We carried out experiments utilizing 750
images and 6 high-level concepts, acquired from the Corel
image collection. A small sample of this set is depicted on
Fig. 1. For the initial (i.e., without contextual knowledge)
detection of the high-level concepts, the approach of [10] was
applied. We utilized 525 images to train and 225 images to
test the 6 separate concept detectors.

In Table 2, we present both the initial detection results and
those refined by the contextual approach presented herein. We
may observe that the precision was improved for all 6 con-
cepts. We should note that concepts road and sand had a
smaller number of positive examples than the others, thus it
was rather difficult to train reliable detectors. However, con-
textual knowledge also improved those “weak” results.

Table 2. Precision/Recall per concept before and after the
application of the visual context algorithm.

Before After Difference
Concepts P R P R P R
road 022 025 043 021 +495% -16%
sand 038 033 055 028 +45% -15%
sea 0.78 071 0.89 0.68 +14% -4%
sky 0.81 072 091 0.67 +12% -7%
SNOw 048 058 0.72 045 +50% -22%
vegetation 0.74 0.62 0.87 054 +18% -13%
Overall 057 054 0.73 047 +28% -13%

5. CONCLUSIONS

This paper presented an approach towards more efficient
high-level detection in images. Its contributions are the set of
relations that are defined and the visual context algorithm that
refined the initial detection results. It is shown that the exist-
ing concept relations improve the precision of the results not
only for already well-trained and effective detectors, but also
for weak and non-effective. Future work will concentrate
on the definition of similar relations for the image regions
and region types from which an image is consisted of, and
the contextualized inter-relations between different semantic
entities.
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