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ABSTRACT

In this paper, we present a novel algorithm for wavelet domain im-
age denoising using the soft thresholding function. The thresholds
are designed to be locally optimal with respect to the structural sim-
ilarity (SSIM) index. The SSIM Index is first expressed in terms
of wavelet transform coefficients of orthogonal wavelet transforms.
The wavelet domain representation of the SSIM Index, along with
the assumption of a Gaussian prior for the wavelet coefficients is
used to formulate the soft thresholding optimization problem. A lo-
cally optimal solution is found using a quasi-Newton approach. This
solution is applied to denoise images in the wavelet domain. The vi-
sual quality of the images denoised using the proposed algorithm is
shown to be higher compared to the MSE-optimal soft thresholding
denoising solution, as measured by the SSIM Index.

Index Terms— Image denoising.

1. INTRODUCTION

Image denoising is an important image processing problem. The lit-
erature is rich with several excellent denoising solutions such as the
sparse 3-D collaborative filtering [1], presence of signal of interest
based algorithm [2], Gaussian scale mixture (GSM) based minimum
mean squared error (MSE) solution [3], the non-local (NL) means
method [4] to name a few. A majority of denoising solutions use dis-
tortion measures that are not perceptually motivated, and more often
than not use the MSE. It has been shown however, that the MSE is
not the best metric either for quality assessment or for optimizing im-
age processing algorithms [5]. The MSE is popular because it lends
itself well to analysis, and due to a lack of competitive image qual-
ity assessment (IQA) algorithms. Recent advances in full-reference
IQA have resulted in a number of powerful new algorithms such as
the SSIM Index [6].

Based on the performance of the SSIM Index as a powerful IQA
algorithm, using it as the objective function in optimizing image pro-
cessing algorithms appears very promising. This optimization is not
straightforward, however, given the form of the SSIM Index; algo-
rithms that explicitly optimize for it are only recently being devel-
oped [7, 8]. In this paper, we propose a soft thresholding algorithm
based on the SSIM Index and apply it to image denoising. Soft
thresholding is considered not only due to its strength as a denoising
solution [9] but also its relatively simple mathematical form.

We begin with a brief overview the space domain SSIM In-
dex. The SSIM Index is then expressed in terms of wavelet coef-
ficients (of orthogonal wavelet transforms), and the soft threshold-
ing optimization problem is formulated using the wavelet domain
definition. The optimization problem is non-linear and non-convex,
thereby making it a non-trivial one. We present a locally optimal
solution to the problem and apply the same to denoise images in
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the wavelet domain. The denoising results demonstrate that the pro-
posed solution gives a higher percecptual quality to the denoised im-
ages when compared to the traditional MSE-optimal solution.

2. THE SSIM INDEX

The most general form of the metric that is used to measure the struc-
tural similarity between two signal vectors x and y in R" is

SSIM(x,y) = [l(x,¥)]*[e(x, ¥))[s(x, ¥)]"- M

2pa by +C1

The term I(x,y) = P e

compares the mean of the signals,

2 Cs . .

c(x,y) = % compares the variance of the signals, and
_ 9zy+Cs . .

s(x,y) = sao, Oy Measures the correlation of the signals. The

quantities p., (1, are the sample means of x and y respectively,
o2, 05 are the sample variances of x and y respectively, and oy
is the sample cross-covariance between x and y. The constants
C'1,C2,C3 are used to stabilize the metric for the case where the
means and variances become very small. The parameters o > 0, 5 >
0, and v > 0, are used to adjust the relative importance of the three
components. We use the following simplified form of the SSIM In-
dex in our work (withaw = 3 =~ =1, and C5 = C2/2):

2Nzuy+cl )( 20—a:y+02 ) (2)
p2+pi+Ci) \o2+o3+C2)°

SSIM(x,y) = (

In image quality assessment, pixel values of local image patches
from the reference and distorted image constitute x and y respec-
tively. The term [(x,y) compares the luminance, c(x,y) compares
the contrast, and s(x,y) compares the structure of the local image
patches. The average of the SSIM values across the image (also
called mean SSIM or MSSIM) gives the final quality measure. The
key idea behind the SSIM Index is to recognize that natural images
are highly structured, and that the measure of structural correlation
(between the reference and the distorted image) is very important in
deciding the overall visual quality. Further, the SSIM Index mea-
sures quality locally and is able to capture local dissimilarities bet-
ter, unlike global quality measures such as MSE (and hence PSNR).
Though (2) has a form that is more complicated than MSE, it remains
analytically tractable.

3. EXPRESSING SSIM INDEX IN WAVELET DOMAIN

To express the space domain SSIM Index in terms of wavelet co-
efficients, the space domain means, variances, and cross-covariance
terms must be expressed in terms of the wavelet coefficients. Of the
several classes of wavelet transforms [10], only orthogonal wavelets
are energy preserving. This property allows for the space domain
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variance and covariance terms to be expressed in terms of the wavelet
coefficients in a straightforward manner. The analysis in this paper
considers only orthogonal wavelet basis and holds good for any or-
thogonal wavelet basis.

3.1. Mean Calculation

The calculation of the mean from the wavelet coefficients depends on
the image size N x N and the number of levels of decomposition.
The approximation subband (low-low (LL) subband) of the resulting
wavelet subband contains all the information required to calculate
the mean of the space domain signal. A known scaling factor k is
applied to the mean of the LL subband to find the mean. Let x
denote an image patch of size N x N and X denote the L level
wavelet transform of the patch (also of size N x N).

3)

where k is the scaling factor, and px, .1, is the mean of LL subband
of X. For e.g., if three levels of decomposition were applied to an
8 x 8 patch, u, = (k)3X(0,0) (since px,rr. = X(0,0)).

Ux = k'L,LLX,LL7

3.2. Variance and Covariance Calculation

The calculation of variance and covariance makes use of the property
that orthogonal wavelet bases obey the Parseval’s theorem. Let x, y,
represent image patches of size N x N and X, Y be their respective
orthogonal transforms. From Parseval’s theorem, it follows that

1 N—-1N-1
ox = 3 X7 — (K px,oe)?, “4)
i=0 ;=0
N—-1N-1
_ 1 X. .Y . kL KL 5
Oy = 33 2 O XigYis = (K pxy ) (K iy en). (5)
i=0 j=0

Replacing the space domain mean, variance, and covariance terms

in (2) with the expressions in (3), (4), (5) gives

2(k" px, i) (k" py L) + Ch
(kfpx,or)? + (Kfpvy,Lr)? + Ch

SSIM(x,y) = (

)
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25 Xi;Yi; — (K" py copy.rn) + Co (©6)
=0 35=0
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Y > XL Y =R (ko + piin) + Ce
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4. SSIM-BASED SOFT THRESHOLDING

The soft thresholding operator in (7) with threshold A is applied to
the wavelet coefficients of the noisy image (denoted by y). The
thresholded wavelet coefficients are inverted to get the space domain
denoised image. The approximation subband is not thresholded.

M+ )

The wavelet domain representation of the SSIM Index in (6)
allows for the formulation of the SSIM-optimal soft thresholding
problem. In this paper, it is assumed that one threshold per sub-
band is used. The optimization problem comprises the design of the
thresholds so that the SSIM Index between the reference and the soft
thresholded output is maximized.

g(y) = sgn(y)(ly| —
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4.1. Problem Formulation

Let x be the reference image patch of size N x NN, n be zero mean
Gaussian noise, and y = x + n be the noisy observation of x. Let
X,Y represent an L level orthogonal wavelet transform of x,y
respectively (all of size N x N). An L level orthogonal trans-
form consists of 3L subbands, and hence 3L thresholds. Let A =
[A1, A2, ..., Asr] denote the vector of thresholds applied to each of
the subbands. Let X (a function of Y, A) be the soft thresholded
output, and let X be the space domain version of X.

It is assumed that the noise variance is known at the receiver.
Since only the observation y is known, a direct evaluation of the
SSIM Index between x and X is not possible. The following obser-
vations combined with the assumption that wavelet coefficients are
Gaussian distributed are used to evaluate the SSIM Index between
the reference and soft thresholded image patches.

Since the noise is zero mean, the mean of the reference and the
thresholded estimate are identical (since the approximation subband
is not thresholded). This makes the mean term in the SSIM Index
equal to identity.

Since the noise is additive, the source variance can be estimated
to be the difference between the variance of the observation ay and
the noise variance o2 as

2 . 2 2
Ox R 0y — 0Oy
N—1N-1
1 ®)
= N2 ij - (kLNY«,LL)Z - Uf.-
i=0 j=0
The expression for the SSIM Index is rewritten as
SSIM(x,%) =
N-1N-1
252 Z Z XiyXij— (K" wy.pe)® + Co
=0 j= ©)
N—1N—
% YZQj + XEJ 2k" v, )’ — oo+ Co
i=0 j=0

To evaluate the above expression, the summation is split across the
approximation subband and the rest of the subbands as

N(X,X)

SSIM (x, )
D(Y,X)

X) = (10)
where N (X, X) = 25 (3, sert Xi; Xi ,J+21 e XX 5)—
(kLlj‘YyLL)QJ’_Cz? (Y X) N2 Zz J N2 (Z’L ,JELL X7/2j+
> ierL X2,) =2k py,iL)? — ok +Co. Thresholdmg is not ap-

plied to the approxlmatlon band, which means X L = Yrr. Dueto
the additive nature of the noise, the first term in the above summation
can be approximated by

j{: XQJ}QLjﬁw

i,jELL

Nty
N2

2
Oy,LL —

0121+N§(,LL)7 (11)

(

where N7 is the number of wavelet coefficients in the approxima-
tion band, 0’%(, LLs Iy, r are the variance and mean of the approxi-

mation band of the noisy observation y. Similarly D(Y, X) can be
simplified as,

NLL

ZX

ZJELL

(12)
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where the same notation as above is used. Substituting these into the
SSIM expression in (6),

. Ni(X,X)

SSIM(x,%) = =,
Dy (Y, X)

(13)

where N1 (X, X) = 2%(1\& (G%(,LL —ok+ H%{,LL)"‘
Ei,ngL Xi;Xi;) — (k*py,Lp)? + Ca, D1(Y,X) =

# Ez] }/i?j + %(NzL(U%(,LL + H%{,LL) + Ei,jeLL Xz'Q,j) -
2(kL UYL L)2 — o2 4 C,. The X values from the remaining sub-
bands are a function of the thresholds A. Further, the above ex-
pression cannot be simplified any further based on the information
available to the denoiser. To estimate the remaining terms in the
summation in (13), a Gaussian model for the source statistics of the
wavelet coefficients is assumed. It is also known that these sub-
bands have zero mean. With this assumption, the empirical values
for the correlation and variance in (13) are replaced by their statisti-
cal equivalents.

In the following, expressions for the correlation between the ref-
erence and the thresholded estimate, and the variance of the thresh-
olded estimate are derived under the Gaussian assumption for the
source. From (7), the first and second order statistics of X are

px = E[X]=E[g(Y)] =0, (14)

0% = f(ov, N) = BI(X — i) = Bl(g(¥))?
= (02 +2?) [1 - erf{ﬁLUyH ~ \/ggyA o [QT)\;] a9

where erf(z) = % [ e~*’dt is the error function. The deriva-
tion is omitted for brevity.

To calculate the covariance term, the MSE result from (10) in
[11] is used. Also, since the source and the noise are assumed to
have zero mean, the covariance and correlation terms are identical.
The covariance between the source and the estimate is

oxx = h(ox,0v,\) = ok + 0% — MSE(X, X)

- pw 21])

Using (11), (12), (15), (16), the optimization problem becomes

(16)

A= argmax , ¢ gar SSIM(x,%)

Ny(x,%)
Dy(x,%)’

an

= argmax, crar

where Ny(X, X) = 2> (NiL(o% oL — on+ B3 ,on)+

3L
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3L
w7 i Y+ e (NEL(o% o+ 13 or) +Z Nif(ov;; Ai))—
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2(k¥pv,rr)? + Co. The functions h(), f() are from (16), (15)
respectively, IN; is the number of wavelet coefficients in subband

1. The source subband variance 03(1_ is estimated using the relation

2 2 2
o, R Oy, — Oq.
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4.2. Solution

The objective function is nonlinear in the design parameters A, and
returns a scalar value for the vector input. The only constraint on
the solution is that A be non-negative. Of the several solutions avail-
able to solve such nonlinear optimization problems [12], the quasi-
Newton method provides a good tradeoff between complexity and
performance. Specifically, the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm [12] is used to find the local optimum. An im-
plementation of this algorithm from Matlab’s optimization toolbox
(called fminunc) is used in the solution. There is currently no
guarantee, however, whether the solution found is global.

5. RESULTS

The computed (locally optimal) solution is now applied to denoise
images that have been distorted with additive white Gaussian noise.
The steps involved in the implementation of the denoising algorithm
are outlined below. It is assumed that the noise variance is known at
the receiver.

e Divide noisy image into non-overlapping blocks of size 32 x32
e Apply L level orthogonal wavelet transform to each block

e For each wavelet transformed block, compute the statistics of
the subbands using the simplifications in Section 4.1, (15),
(16)

e Solve the optimization problem in (17) using the BFGS algo-
rithm to find a locally optimal A*. The algorithm is initial-
ized using the MSE-optimal soft thresholding solution from
Chang et al. [11]

e Soft threshold the noisy wavelet coefficients using A*

e Apply inverse wavelet transform on a block by block basis,
for all the blocks in the image

The performance of this locally SSIM-optimal algorithm is com-
pared to the MSE-optimal solution by Chang et al. [11]. The Chang
et al., soft thresholding solution has been shown to be a very pow-
erful denoising method. Their solution has been shown to be nearly
MSE-optimal for several popularly used models for wavelet coef-
ficients including Gaussian, Laplacian, and Generalized Gaussian
sources. Further, their solution is space varying and adapts based on
the local subband statistics.

The denoising results are presented in Fig. 1. A comparison of
Figs. 1(c) and 1(d) reveals the differences between the MSE-optimal
and the proposed SSIM-based algorithm. First, the MSE and SSIM
values of the images denoised using the algorithms in question are
consistent — MSE-optimal solution has lower MSE and SSIM In-
dex, and vice-versa for the SSIM-based solution (even though the
proposed algorithm is locally SSIM-optimal). More importantly,
the perceptual quality of the SSIM-based solution is higher than the
MSE-optimal solution. This claim is made based on the following
observations: better overall contrast, retention of more image detail
especially in the whiskers and hair region, and finally a higher SSIM
value. Similar improvement (subtle but important) was seen in sev-
eral other test images from the ‘Austin and Vicinity’ database [13].
These results are summarized in Table 1.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel algorithm for SSIM-based soft
thresholding and applied it to denoise images in the wavelet domain.



Image on | L Noisy MSE-optimal SSIM-based

MSE | SSIM | MSE | SSIM | MSE | SSIM
Img0039 | 40 | 3 | 1600 | 0.4016 | 512 | 0.5154 | 586 | 0.5350
Img0073 | 30 | 3 | 901 | 0.5545 | 386 | 0.6293 | 408 | 0.6551
Mandrill | 50 | 3 | 2492 | 0.2766 | 509 | 0.4835 | 577 | 0.4954
Img0043 | 40 | 3 | 1593 | 0.4458 | 557 | 0.5733 | 600 | 0.5815

Table 1. Denoising results for a set of images from the ‘Austin and Vicinity’ database.

Fig. 1.

1(a) Reference image Mandrill.
on = 50, MSE = 2492.49, SSIM Index = 0.2766. 1(c) Image de-
noised with the MSE-optimal algorithm, MSE = 509.16, SSIM In-
dex = 0.4835. 1(d) Image denoised with the SSIM-based algorithm,
MSE = 577.54, SSIM Index = 0.4954.

1(b) Noisy image with

The SSIM Index is first expressed in terms of wavelet transform co-
efficients, following by the formulation of the optimization problem.
A locally optimal solution is found using a quasi-Newton approach.
The performance of the proposed denoising solution is shown to be
better than the MSE-optimal soft thresholding solution in terms of
visual quality (as confirmed by higher SSIM Index values).

The proposed solution is a first step towards SSIM-optimal soft
thresholding. There are several improvements that can be made to
the proposed solution. A globally optimal solution, though involved,
should give better denoising results. The Gaussian model for wavelet
statistics can be replaced with more accurate models such as general-
ized Gaussian or Gaussian scale mixture (GSM). On the implemen-
tation side, non-overlapping blocks can be replaced with overlapping
image blocks to reduce blocking artifacts. We are working on incor-
porating all these improvements into the proposed solution.
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