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ABSTRACT

In this paper we propose a novel algorithm for super resolution
based on total variation prior and variational distribution approxi-
mations. We formulate the problem using a hierarchical Bayesian
model where the reconstructed high resolution image and the model
parameters are estimated simultaneously from the low resolution
observations. The algorithm resulting from this formulation utilizes
variational inference and provides approximations to the posterior
distributions of the latent variables. Due to the simultaneous pa-
rameter estimation, the algorithm is fully automated so parameter
tuning is not required. Experimental results show that the proposed
approach outperforms some of the state-of-the-art super resolution
algorithms.

Index Terms— Super resolution, total variation, variational
methods, parameter estimation, Bayesian methods.

1. INTRODUCTION

High resolution (HR) images can in some cases be obtained directly
from high-resolution acquisition devices. However, due to theoreti-
cal and practical limitations, in most cases the resolution of the ac-
quired images are lower than desired. These limitations include the
increased cost, data transfer rate and the amount of shot noise due
to the size of the digital sensor. Recently signal processing tech-
niques have been utilized as an alternative to increase the resolution
of digital images.

Super resolution describes the process of reconstructing an HR
image from a set of low resolution (LR) observations. The LR im-
ages typically are undersampled, degraded and shifted versions of
the HR image with subpixel displacements. The recovery of the HR
image is possible through the use of the subpixel displacements be-
tween the observations.

Although the super resolution literature is rich (see [1] for an ex-
tensive review) it is still an open and widely investigated topic. Re-
cently, motivated by its success in image recovery problems, the use
of the total variation (TV) function and its variants has become popu-
lar in super resolution. Both regularization-based [2,3] and Bayesian
[4] formulations have been proposed which utilize TV functions to
characterize the HR images. However, both of these approaches in-
volve certain model parameters to be set by the user, which is in
general a difficult task. To our knowledge no work has been reported
on simultaneously estimating the algorithm parameters and the HR
image.

This work has been partially supported by the Spanish research pro-
gramme Consolider Ingenio 2010: MIPRCV (CSD2007-00018) and the Min-
isterio de Educacion y Ciencia under contract TIN2007-65533.

In this paper we propose a hierarchical Bayesian methodology
for super resolution where the LR observations and the unknown HR
image, as well as their associated hyperparameters (observation and
acquisition noise, and the variance of the HR image) are modeled in
two stages. We apply variational inference methods to this model
and propose an algorithm which simultaneously provides estimates
to the unknowns.

The rest of this paper is organized as follows. In Sec. 2 we for-
mulate the LR image acquisition system by a linear time invariant
model. The unknown variables in this model are cast into a hierar-
chical Bayesian framework as presented in Sec. 3. The variational
inference to estimate the unknowns and the proposed algorithm are
presented in Sec. 4. Experimental results are presented in Sec. 5 and
conclusions are drawn in Sec. 6.

2. PROBLEM FORMULATION

Consider a set of L low resolution (LR) images y = {y1, ..,yL},
where yi, i = 1, . . . , L represents the ith low resolution (LR) im-
age. The goal is to reconstruct the high resolution (HR) image x
that would be observed under ideal conditions. The HR image is of
size P1N × P2M and each of the LR images is of size N × M , so
that the horizontal and vertical magnification factors are P1 and P2,
respectively. Each image can be transformed to a column vector by
lexicographically ordering the pixels, so that the (P1N ×P2M)× 1
vector x represents the HR image, and the NM×1 vector represents
the ith LR image.

We denote by the P1P2NM×P1P2NM matrix Ci the warping
matrix that maps the HR image x to the high-resolution version xi

of the LR image yi. The NM × P1P2NM matrix A is the down-
sampling matrix and the P1P2NM × P1P2NM matrices Hi are
the PSFs of the blurs. Then the LR image acquisition process can be
modeled mathematically as follows

yi = AHiCix + ni = Bix + ni, (1)

where ni is the combination of the registration and acquisition noise.
In this work the matrices Hi and A are assumed known. Their esti-
mation using variational methods is left as future work.

3. HIERARCHICAL BAYESIAN MODEL

Utilizing a Bayesian analysis, the unknown x and the observed LR
images yi, i = 1, . . . , L are treated as stochastic quantities and prior
probability distributions on them are defined. Since these distribu-
tions will also have their model parameters, called hyperparameters,
we adopt a hierarchical Bayesian model with two stages. In the first
stage, the HR image and the observation noise are modeled using
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some unknown hyperparameters, and the hyperprior distributions of
the hyperparameters are modeled in the second stage.

3.1. First Stage: LR Image Acquisition Model

Using the model in Eq. (1) and assuming that ni is a zero-mean
white Gaussian noise with the variance β−1

i , the likelihood of the
LR image yi can be written as

p(yi|x, βi) ∝ β
NM/2
i exp

[
−βi

2
‖ yi − Bix ‖2

]
. (2)

Assuming statistical independence of the noise between LR images,
the probability distribution of the set of LR images y given x can be
expressed as

p(y|x, β) =
∏

i

p(yi|x, βi) (3)

=

[∏
i

β
NM/2
i

]
exp

(
−1

2

∑
i

βi ‖ yi − Bix ‖2

)
,

where β = (β1, . . . , βL).

3.2. First Stage: HR Image Model

As the prior model for the HR image x we utilize the quadratic ap-
proximation of the TV prior

p(x|α) ∝ αP1P2NM/2 exp

[
−1

2
αTV(x)

]
, (4)

where

TV(x) =
∑

j

√
(Δh

j (x))2 + (Δv
j (x))2. (5)

The operators Δh
j (x) and Δv

j (x) correspond to, respectively, hori-

zontal and vertical first order differences, at pixel j, that is, Δh
j (x) =

xj −xl(j) and Δv
j (x) = xj −xa(j), where l(j) and a(j) denote the

nearest neighbors of j, to the left and above, respectively.

3.3. Second Stage: Hyperpriors on the Hyperparameters

In the second stage of the Bayesian model, we use flat improper
hyperpriors on α and βi, that is, we utilize

p(α) ∝ const, p(βi) ∝ const, i = 1, . . . , L. (6)

Note that with this choice of the hyperpriors the hyperparameters α
and βi are solely estimated from the LR observations y.

Finally, combining the first and second stage of the problem
modeling in Eqs. (3), (4) and (6) we find the joint probability dis-
tribution p(α, β,x,y) = p(α, β)p(x|α)p(y|x, β).

4. VARIATIONAL INFERENCE

The Bayesian paradigm dictates that inference on (α, β,x) should
be based on

p(α, β,x | y) =
p(α, β,x,y)

p(y)
, (7)

However, the posterior p(α, β,x | y) can not be found in closed
form. We therefore apply variational methods to approximate this
distribution by the distribution q(α, β,x) and utilize a mean field

approximation so that q(α, β,x) = q(α, β)q(x). Additionally, we
assume that q(x) is a degenerate distribution, that is, a distribution
which takes one value, xk with probability one and the rest with
probability zero, which can be expressed mathematically as

qk(x) = δ(x − xk). (8)

The variational criterion used to find this approximation is to
minimize the Kullback-Leibler (KL) distance between q(α, β,x)
and the posterior p(α, β,x | y), which is given by

CKL(q(α, β,x) ‖ p(α, β,x|y))

=

∫ ∫ ∫
q(α, β,x) log

(
q(α, β,x)

p(α, β,x|y)

)
dαdβdx

=

∫ ∫ ∫
q(α, β,x) log

(
q(α, β,x)

p(α, β,x,y)

)
dαdβdx + const,

(9)

which is always non negative and equal to zero only when q(α, β,x) =
p(α, β,x|y).

The use of the TV prior makes the integral in Eq. (9) dif-
ficult to evaluate so a minorization of the TV prior is utilized.
By defining the following functional M(α,x,u), for α, x, and a
P1P2NM−dimensional vector u ∈ (R+)P1P2NM

M(α,x,u) = const × αP1P2NM/2

× exp

[
−α

2

∑
j

(Δh
j (x))2 + (Δv

j (x))2 + ui√
uj

]
, (10)

and using the following inequality, also used in [5,6], for w ≥ 0 and
z > 0 √

wz ≤ w + z

2
⇒ √

w ≤ w + z

2
√

z
. (11)

we obtain a lower bound for the image prior (c a constant)

p(x|α) ≥ c · M(α,x,u), (12)

and the following lower bound for the joint probability distribution

p(α, β,x,y) ≥ p(α)p(β)M(α,x,u)p(y|x, β)

= F(α, β,x,u,y). (13)

Utilizing Eq. (13) we obtain the following upper bound for the
KL distance∫ ∫ ∫

q(α, β,x) log

(
q(α, β,x)

p(α, β,x,y)

)
dαdβdx

≤ min
u

∫ ∫ ∫
q(α, β,x) log

(
q(α, β,x)

F(α, β,x,u,y)

)
dαdβdx

= M(q(x, α, β)) . (14)

Therefore, instead of minimizing the KL distance, we minimize the
upper bound M(q(x, α, β)) by finding a sequence of distributions

{qk(α, β,x)}. We adopt an alternating minimization approach
where at each step this upper bound is minimized with respect to
one of the variables

{
x, α, β

}
while holding others as constant,

which leads to an iterative procedure shown in Algorithm 1.
Let us now develop the solutions for each of the steps within

the while loop of Algorithm 1. The minimization is carried out
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Algorithm 1 Variational TV Super Resolution

Given u1 ∈ (R+)P1P2NM and q1(α, β)
while Convergence criterion is not met do

1. Estimate HR image x using (15).
2. Estimate u using (18).
3. Estimate hyperparameters α, β using (21)-(22).

first with respect to the HR image x. By taking the derivative of
M(q(x, α, β)) and setting it equal to zero we obtain at iteration k

Q(α, β)xk =
∑

i

βiB
t
iyi, (15)

Q(α, β) =
∑

i

βiB
t
iBi + αΔt

[
W (uk) 0

0 W (uk)

]
Δ, (16)

with Δ =
[
(Δh)t (Δv)t

]t
and W (uk) a P1P2NM × P1P2NM

diagonal matrix of the form

W (uk) = diag

([
uk

j

]− 1
2
)

, j = 1, . . . , P1P2NM. (17)

The vector uk+1 is found in the second step as

uk+1
j =

[
Δh

j (xk)
]2

+
[
Δv

j (xk)
]2

, j = 1, . . . , P1P2NM. (18)

It is clear from this equation that the vector uk+1 represents the local
spatial activity in the HR image xk. Therefore, matrix W (uk) in
Eq. (17) can be interpreted as the spatial adaptivity matrix since it
controls the amount of smoothing at each pixel location depending
on the strength of the intensity variation at that pixel, as expressed
by the horizontal and vertical intensity gradients.

The direct solution of the HR image estimate in Eq. (15) is prac-
tically hard to compute because of the inversion of the huge matrix
Q(α, β). Therefore we use a conjugate gradient algorithm to find it
numerically.

Finally, in the last step of the algorithm, the distributions of the
hyperparameters qk+1(α) and qk+1(βi) are found by differentiating
M(q(x, α, β)) with respect to q(α, βi) and setting it equal to zero.
These distributions are Gamma distributions given by

qk+1(α) ∝ αP1P2NM/2 exp

[
−α

∑
j

√
uk+1

j

]
(19)

and

qk+1(βi) ∝ β
NM/2
i exp

[
−βi

‖ yi − Bix
k ‖2

2

]
(20)

The means of these distributions are given by

αk+1 = Eqk+1(α)[α] =
P1P2NM/2 + 1∑

j

√
uk+1

j

, (21)

βk+1
i = Eqk+1(βi)

[βi] =
NM + 2

‖ yi − Bixk ‖2
, (22)

The algorithm is summarized above in Algorithm 1.

(a) (b)

(c) (d)

Fig. 1. Super resolution results (4x resolution increase) by (a) bicu-
bic interpolation, (b) MS, (c) FRS, and (d) proposed algorithm.

5. EXPERIMENTAL RESULTS

In this section we compare the performance of the proposed algo-
rithm with bicubic interpolation, the method proposed in [7], de-
noted by MS, and the fast super resolution method based on bilateral
TV in [4], which is denoted by FRS. The parameters of the FRS al-
gorithm are chosen according to [4] which resulted in the visually
best results. For all experiments, the criterion ‖ xk − xk−1 ‖2 /
‖ xk−1 ‖2< 10−4 is used to terminate the proposed algorithm, and
the CG threshold is set equal to 10−4.

In the first experiment, we run the algorithms on the EIA dataset
obtained from [4]. In this data set, the original HR frame is shifted
by 16 different motion vectors, blurred, and downsampled by 4 to
obtain 16 LR observations. The methods are used to obtain an HR
image with a factor of 4 resolution increase in each direction. The
restoration results are shown in Fig. (1). As expected, all super res-
olution algorithms result in better reconstructions than bicubic in-
terpolation. Comparing the results in Fig. 1(b)-(d), it is clear that
the reconstruction of the proposed algorithm gives the most visu-
ally enhanced result. This is justified by looking at Fig. (2) where
the middle sections of the reconstructions are shown in detail. Note
that the numbers and the intersection of the lines with the circle are
sharper in the image obtained by the proposed algorithm than by the
other algorithms.

We present another experiment with the 20 real LR images taken
from the disk dataset from [4]. The motion is estimated using the
pyramidal Lucas-Kanade optical flow algorithm, and the blur is as-
sumed to be a 6x6 Gaussian with variance 1. The reconstructed HR
images have a factor of two resolution enhancement and are shown
in Fig. (3). Although motion estimation errors are present, the pro-
posed algorithm produces a sharp HR image with less ringing arti-
facts than the other approaches. This can be observed more clearly
in the detailed areas shown in Fig. (4).
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(a) (b)

(c) (d)

Fig. 2. Detailed areas of Fig. (1). (a) Bicubic interpolation, (b) MS,
(c) FRS, and (d) proposed algorithm.

6. CONCLUSIONS
In this paper we presented a Bayesian super resolution method based
on total variation image priors. Within a hierarchical Bayesian
framework, the reconstructed HR image, the acquisition and mo-
tion estimation noise for each LR image is estimated simultaneously.
Variational inference is applied to estimate the posterior distributions
of the unknowns. The main novelty of the proposed algorithm is that
the model parameters are estimated during the reconstruction so that
the algorithm is fully automated whereas existing approaches require
data-specific parameter tuning. Experimental results demonstrate
that the proposed algorithm results in better HR reconstructions than
existing approaches with both synthetic and real data.
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Fig. 3. Super resolution results (2x resolution increase) by (a) bicu-
bic interpolation, (b) MS, (c) FRS, and (d) proposed algorithm.
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Fig. 4. Detailed areas of Fig. (3). (a) Bicubic interpolation, (b) MS,
(c) FRS, and (d) proposed algorithm.
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