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ABSTRACT 
 
We present information-theoretic underpinnings of a 
computation theory of low-level visual fixations in natural 
images. In continuation of our prior work on optimal 
contrast-based fixations [1], we develop an optimum texture-
based fixation selection algorithm based on a recent theory 
of non-stationarity measurement in natural images [2]. 
Thereafter we propose a simple coupling of the optimal 
texture-based and contrast-based fixation features to produce 
a new algorithm called CONTEXT, which exhibits robust 
performance for fixation selection in natural images. The 
performance of the fixation algorithms are evaluated for 
natural images by comparison to randomized fixation 
strategies via actual human fixations performed on the 
images. The fixation patterns obtained outperform 
randomized, GAFFE-based [3], and Itti [4] fixation 
strategies in terms of matching human fixation patterns. 
These results also demonstrate the important role that 
contrast and textural information play in low-level visual 
processes in the Human Visual System (HVS). 
 
Index Terms— Fixation Selection, Non-stationarity, Natural 
Scene Statistics, Textures, Contrast, MICA 
 

1. INTRODUCTION 
 

The bewildering complexity of natural scenes is rivaled only 
by the amazing ability of the Human Visual System (HVS) 
to comprehend it. Comprehension, from an operational point 
of view, entails, in part, the systematic analysis and 
integration of different types of visual information at various 
levels of processing performed by the HVS—from low-level 
vision (corresponding to the ‘front-end’ of the HVS) to high-
level visual processing (i.e. the ‘back-end’ processing of 
HVS)—and, of course, the subsequent utilization of the 
resulting knowledge to yield intelligent behavior. From an 
image processing point of view, it seems very reasonable 
that understanding of the workings of this complex system 
should also involve understanding of the nature of the 
information that the HVS is ‘designed to process’ at various  
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levels of abstraction from low- to high- level processing. 
This point of view of course makes the tacit assumption that 
the HVS is optimized in some way to process visual 
information. 

Attneave [5] and Barlow [6] hypothesized back in the 
1950's that information theory can provide a link between 
environmental statistics and the properties of neural 
responses, in that the retina and other stages of the early 
visual system have evolved to develop efficient codes (i.e. in 
the least number of bits) for the information processed at the 
respective stages (given biological constraints at each stage 
such as the available number of neurons etc). Verifying the 
hypothesis entails not only the discovery of rich Natural 
Scene Statistics (NSS) models but also establishing precise 
quantitative relationships to neural coding procedures that 
purportedly optimize certain aspects of NSS. Doing so 
would precisely establish the nature of the duality between 
NSS and low-level HVS processes. 

Given the scope and generality of this hypothesis, various 
modified and restricted versions of this ‘efficient coding 
hypothesis’ have been proposed and verified by researchers. 
More recently, work in the above two-fold research program 
of developing powerful theoretical models for NSS coupled 
with investigations into their implications for information 
processing in the HVS have greatly advanced. 

In this paper we, for the first time, explicitly propose and 
verify a Barlow-type hypothesis for fixation selection in 
natural images. Our general hypothesis is that low-level 
visual fixations performed by the HVS in natural scenes are 
driven by the goal of maximally extracting visual 
information from the scene. Specifically, we verify this 
hypothesis for the case of textural and contrast information. 
In continuation of our prior work on optimal contrast-based 
fixations [1], we develop, in Section 2, an optimum texture-
based fixation strategy based on our recent theory of non-
stationarity detection in natural images [2]. These two 
strands of work give us visual fixation patterns that 
optimally extract, respectively, contrast and textural 
information from natural scenes. We propose a simple 
coupling of these two fixation schemes and evaluate the 
performance of the resultant algorithm, named CONTEXT, 
in Section 3, by means of comparison to randomized fixation 
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strategies via actual human fixations performed on the 
images. We find that the fixation patterns thus obtained 
outperform randomized and state-of-the-art fixation 
selection strategies [3-4] in terms of matching human 
fixation patterns. 
 

2. TEXTURE-BASED FIXATION FEATURES 
 

We define texture as a ‘roughly stationary’ spatial process 
where the degree of non-stationarity decreases with 
increasing spatial scale of analysis [2]. The structure of 
natural images is the result of complicated non-linear 
interactions of such texture elements, where the non-
linearities can be induced by occlusions, boundaries, spatial 
transients, and other phenomena. While contrast is a highly 
local image property, texture is a regional concept—
requiring probabilistic descriptions on multi-dimensional 
spaces. However, these non-linearities usually induce non-
stationarities containing considerable information about the 
structure of the image. Therefore we may pose that visual 
fixations that seek to extract textural information from 
natural images should be driven by image non-stationarities. 

Clearly, if there are no significant non-stationarities 
present in an image, then it may be considered as a single 
texture, and so, performing multiple fixations will yield little 
textural information beyond the parameters of the texture 
model. Moreover, since statistical texture models generally 
assume that texture samples are drawn from stationary 
processes, recognizing stationary image regions is an 
important aspect of image information gathering. Texture-
based segmentation is an obvious example of this [2]. 
Towards this end we have proposed a quantitative measure 
of non-stationarity called the Natural Image Non-
stationarity Index (NANS Index), which we now describe, 
along with modifications towards developing a texture-based  
fixation-finding strategy. 

A spatial random field is stationary if, for an arbitrary 
window, the joint distribution of the random variables 
associated with the window remains invariant with respect to 
translation across spatial coordinates. The size of the 
window defines the scale of image analysis [2]. 

Consider the case wherein the NxN non-stationarity 
analysis window consists of two non-overlapping regions 
that partition the window—one called the center patch and 
the other, the surround patch. This could consist of 
concentric circular and ring-shaped regions, for example, or 
square approximations to them. When such a geometry is 
used the non-stationarity measurement is called a center-
surround or CS NANS Index, to distinguish it from indices 
computed using other geometries, such as side-by-side 
patches [2]. The center-surround window is then centered at 
every image coordinate (pixel) allowing computation of the 
CS NANS Index at every coordinate. 

In order to measure non-stationarity, probability 
distributions must be associated with the center and surround 

patches. In [2, 7] we showed how the joint probability 
measures can be naturally defined via an Multilinear ICA 
(MICA) decomposition [7] of the center and surround 
patches. Given this the central idea of our theoretical non-
stationarity index is to gauge the relative change of mutual 
information between center and surround patches [2]. Let p 
and q be probability densities associated with the center and 
surround patches respectively; and d

iip 1}{  and d
iiq 1}{  be 

marginal distributions corresponding to the best ICA 
approximation of p and q. Then the relative change in 
mutual information between center and surround patches is: 
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Where H(p) is the entropy of p and where: 
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Whereas H[(pi) (qi)] captures the entropy difference 
between the corresponding (MICA) filter responses of the 
center and surround patches, H(p; q) measures the overall 
entropy change between the center and surround patches. 

It turns out, however, that the numerical implementation 
of theoretical non-stationarity index in (1) is computationally 
very prohibitive and is thus, at present, impractical to deploy 
for fixation selection purposes. Nevertheless under special 
circumstances, it turns out that the numerator and 
denominator of (1) assume the form of a linear combination 
of correlations of filtered responses (of the center and 
surround patches respectively) between the different MICA 
channels [2]. The problem therefore reduces to find the 
optimal coefficients of the above correlations. To this end 
we effectively determine the weighting coefficients by 
computing the relative change in MSE when coding the two 
patches with respect to the MICA filters of the center 
patch—this results in a non-stationarity index, though sub-
optimal, that has the form consisting of a linear combination 
of correlations as correlations as described above. It is this 
practical CS-NANS index that we deploy for our texture-
based fixation selection algorithm below. 

The above NANS Index can be implemented using ICA 
filters, or other similar decomposition (since MICA can be 
generalized with respect to arbitrary basis functions [7]). 
However the direct computation of even the practical 
MICA-based CS-NANS index suffers from considerable 
computational complexity, since the MICA filters must be 
computed from every patch. Therefore, for the problem at 
hand, we have developed a sub-optimal approach based on 
computation of relative coding distortion with respect to the 
d<M2 dominant filters [2] from a MxM bank of Gabor filters 
(where M<<N). It turns out that the resulting non-
stationarity index has the same form as (1) i.e. linear 
combination of correlations of filtered responses. 
Throughout this paper we employ this Gabor-based CS 
NANS index to quantify the non-stationarity structure of 
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images. As an example, Fig. 1(a) shows a natural image 
containing two primary substances: grass and water. The 
corresponding non-stationarity map is shown in Fig. 1(b). 

We now formulate a greedy algorithm for determining the 
optimum non-stationarity-based fixations, which can be 
stated in terms of the following simple rule: The next 
optimum fixation point is simply the point in the image 
corresponding to the maximum non-stationarity. 
 

3. SIMULATIONS: THE CONTEXT ALGORITHM 
 

Having developed optimal contrast and texture based 
fixations above, the question is what is the best way to 
combine these visual cues to yield optimal performance. A 
natural approach would be to formulate a joint optimization 
problem for extracting contrast and textural information. 
However, we use a simpler approach for cue combination 
which is that of a simple alternation of contrast and texture 
based fixation patterns. As it turns out, this simple strategy, 
which we call the CONTEXT algorithm, performs 
remarkably well in modeling human fixations that in many 
cases outperforms both the contrast- and texture-based 
fixations performed separately. Furthermore we point out 
that since the HVS operates on contrast images, in the 
simulations we performed the non-stationarity measurement 
on the corresponding contrast image. 
 The experimental set up used to generate the fixation 
points is consistent with that described in [8] for the 
gathering of the human fixation patterns wherein the pixel 
resolution is 1 arc-minute per pixel. In all the simulations, 
Nfix = 10 fixation points were generated which were then 
compared to the aggregate of all human fixation patterns 
performed for the image under consideration. Comparison 
between two sets of fixation points was achieved by firstly 
forming probability maps by dropping Gaussians of a certain 
with a each fixation point, combining them by means of a 
max operator and finally normalizing to obtain a probability 
map. The probability maps were then compared by means of 
both Average and Harmonic Mean KLS measures (which 
are both forms of symmetric KLD). In order to get a 
complete picture of the performance of the various 
algorithm, Gaussians of one-, two-, and three- foveal width 
were employed. 
 Figure 2 shows a representative example of the fixation 
performance of CONTEXT, the GAFFE algorithm [3] 
together with actual human fixations recorded for the image. 
Figures 3-8 show the performance of the various fixation 
strategies (including both texture and contrast performed 
separately) for a larger collection of images from the 
DOVES database [8] of natural image fixations. For 
benchmarking we also evaluated the performance of 
randomized fixation strategies. In true randomized fixations 
the fixation coordinates were chosen randomly. In HVS-
random fixations, human fixations from another randomly 

selected image were placed on the current image. From the 
results we can see that the CONTEXT algorithm overall  
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
outperforms both randomized and state-of-the-art fixation 
strategies. 
  These results point towards the eventual construction of a 
unified information-theoretic understanding of low-level 
visual fixation processes in the HVS, which in turn can yield 
insights into the deeper questions of visual understanding of 
natural scenes. 
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(a) (b) (c) 

      Fig. 2. Comparison of texture-contrast with human fixations on image #245.  
             (a) Human fixations; (b) CONTEXT fixations; (c) GAFFE fixations. 

(a) (b) 

Fig. 1. Non-stationary analysis of a natural 
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Fig. 3. Average KLD, 1-Foveal Width. Error bars 
           indicate standard deviations. 
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Fig. 4. Harmonic Mean KLD, 1-Foveal Width. Error bars  
           indicate standard deviations. 

Fig. 5. Average KLD, 2-Foveal Width. Error bars  
           indicate standard deviations. 
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Fig. 6. Harmonic Mean KLD, 2-Foveal Width. Error bars  
indicate standard deviations 
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Fig. 7. Average KLD, 3-Foveal Width. Error bars 
           indicate standard deviations 
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Fig. 8. Harmonic Mean KLD, 3-Foveal Width. Error bars 
           indicate standard deviations 
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