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Abstract
The rapidly growing collection of fruit fly embryo images makes automated Image Segmentation
and classification an indispensable requirement for a large-scale analysis of in situ hybridization
(ISH) – gene expression patterns (GEP). We present here such an automated process flow for
Segmenting, Classification, and Clustering large-scale sets of Drosophila melanogaster GEP that is
capable of dealing with most of the complications implicated in the images.

Index Terms
Image segmentation; Image registration; Pattern recognition

1. INTRODUCTION
Microscopy and comparative analysis of images is an important tool to study the role of genes
and their products in developmental processes of model organisms including the fruit fly
Drosophila melanogaster. Techniques such as mRNA in-situ hybridization (ISH) have been
developed to localize gene activity in space and to capture this information in form of spatio-
temporal gene expression patterns. The boom in high throughput techniques has also seized
modern developmental biology. Gene expression patterns for all (about 13,500) genes across
a set of developmental stages are being generated systematically, leading to the accumulation
of a wealth of high dimensional data with complex encoding. Bioinformatics currently helps
with data management, storage, access, and integration (e.g. BDGP [1,2,3,4] and FlyBase
[5]), but could also assist in data processing, data analysis and provide an observation tool for
researchers in the field. Such an attempt has been made by Fly Express, which comprises 42,825
images for 2,871 genes as of January 17th, 2007. It is currently the largest database that
computes and holds standardized images and offers a Basic Expression Search Tool, BEST
[6], to retrieve genes with similar expression patters to a given query pattern. An alternative
and more robust set of algorithms was proposed by Peng et al. [7,8]. Here we describe a
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processing pipeline for automatic segmentation, classification and clustering of ISH images.
It is based on the representation of expression patterns by Bessel eigenfunctions which should
allow a faster and easier pattern classification once the coefficients are calculated. We apply
our approach to a subset of 681 genes with images for all 6 developmental stages and an average
of 2.5 ISH images per gene and stage. In total, 10428 images were selected from BDGP[1].

2. PROCESSING PIPELINE
The goal of the image processing pipeline is to extract the Fourier coefficients for the gene
expression pattern of every whole embryo. The processing pipeline is summarized in Figure
1.

First, a shading corrections is applied to the raw image to obtain a “clean image”. This is done
by subtracting a Gaussian smoothed image from the raw image (filter width 64×64 pixel) and
expanding the color range to the full 8 bit. Figure 2 shows an example of this process.

To find the transformation of the embryo shape onto a circle, we can only use the outline of
the embryo because the color information contains the information of the gene expression and
therefore differs from image to image. To extract the shape of the embryos from the image,
we compute the magnitude of the gradient in the cleaned image. The gradient based
segmentation produces a reliable and accurate separation on the border of the focal plane.
Instead of a simple threshold, a Gaussian mixture model [9,10] in gradient space is used. The
result of this fragmentation is a scalar image describing the probability for the membership to
the two classes (background – embryo). This probability map is smoothed by a total variation
filter. After filtering, a mask is obtained with an unpredictable count of holes in it, because
some areas in the embryo have feature values similar to the background. We close the holes
and obtain the binary Segmentation Result. Only the shape of a single isolated embryo and
shapes of several embryos that touch each other will remain, see Figure 3 for an example.

In case of several touching embryos, additional knowledge about the expected shape must be
included to obtain the mask of a single embryo (see Figure 4). Gradient vector field snakes are
then used to isolate the embryo [11,12]. To make an automatic placement of the initial contour
possible, the images are rigidly registered onto an ellipse prior to the active contour
segmentation.

The next step in the image processing pipeline is to register the extracted embryo outline onto
an ellipse. This is done in two steps: first, we apply a rigid registration [13] and second, a
nonlinear registration onto the ellipse [14,15]. This minimizes the distortions produced by the
nonlinear registration. The transformations onto an ellipse, computed from the registration of
the embryo outlines, are applied to the masked embryo images (Figure 5 left) to obtain the
expression pattern mapped onto an ellipse (Figure 5 right). Finally, the ellipse is stretched to
circular shape.

After the geometric transformation the expression pattern can be extracted. Color segmentation
as in refs. [16,17] was used to handle the wide variation in the staining of the image and to
detect the pattern. To find the Gaussians and their weights, an Expectation-Maximization (EM)
method was used [10]. This method requires pre-setting of the expected number of Gaussians.
We assume more Gaussians than we need for representing the pattern, i.e. oversegmentation,
and drop Gaussians that belong to the background to separate staining patters from possible
artifacts. We initialize the EM algorithm with 7 expected Gaussians and keep 4 of them to
represent the gene expression pattern. The result is one scalar image per Gaussian describing
the probability for the membership to the regarded Gaussian. These four probability maps are
combined by taking the maximum for each individual pixel.
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The patterns (r, φ) are described by a set of Fourier coefficients:

(1)

As basis, the eigenfunctions of the Laplace operator on a circle of radius ℓ,

(2)

are used, where ℓ is the radius of the circle, Jk(z) are the k-th Bessel function, jk,j is the j zero
of the k-th Bessel function and Nj,k is a normalization factor so that

The ψj,k form a complete orthonormal system. Two examples of the basis functions are shown
in the top row of Figure 6. We found that every pattern can be adequately expressed by a set
of 420 eigenfunctions (k ∈ [0,⋯, 20], j ∈ [1,⋯, 20]). The lower row of Figure 6 shows an
example image (left) and its reconstruction by the Fourier series (right).

3. VERIFICATION
To check how well the patterns are represented by the Fourier coefficients, a hierarchical
clustering on a set of 7 images is shown in Figure 7. For the clustering the Euclidean norm in
the truncated 420 dimensional space of Fourier coefficients ‖aj,k‖ is used. Notice that this
representation groups similar patterns together. Larger data sets of images show the same
agreement with the visual expectation (data not shown). In the application, the orientation of
the embryo w.r.t. the two axis of symmetry of the ellipse is important. At present, the correct
orientation is not generated automatically. Unless annotated in the initial image, all four
orientations are included in the clustering and in the end an expert control [1] is inevitable.

4. CONCLUSIONS AND FUTURE WORK
We have presented an automatic image processing pipeline for the classification of gene
expression patterns of fruit fly images. The image processing steps use the outline of the fly
embryos to obtain a transformation to a circular shape and apply this transformation to the gene
expression pattern. The transformed intensity pattern is expressed in terms of Bessel functions
and the metric space of the expansion coefficients is used to identify similarities in the patterns.

The metric space of the expansion coefficients will be used in image retrieval applications and
in relation to genomic meta data of the images.
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Fig. 1.
Extraction of the Fourier coefficients of the expression pattern
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Fig. 2.
Preprocessing of the original image (left) to the clean image (right)
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Fig. 3.
Shape Segmentation
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Fig. 4.
Processing of touching embryos; the original images (left), after rigid registration of the outline
on a centered ellipse (middle) and the extracted embryo image from the gradient vector field
snakes (right)
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Fig. 5.
Masked embryo images (left) and the result of the registration (right)
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Fig. 6.
Examples of two Bessel-Eigenfunctions with k = 0, j = 3 (upper left) and k = 2, j = 2 (upper
right). Circle fitted GEP (lower left) and the reconstructed GEP from the computed coefficients
(lower right).
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Fig. 7.
Hierarchical clustering on a set of 7 images that demonstrates that visually similar pictures are
grouped together.
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