
GRAPH CUT SEGMENTATION OF NEURONAL STRUCTURES FROM TRANSMISSION
ELECTRON MICROGRAPHS

Nhat Vu and B. S. Manjunath

Center for Bio-image Informatics
Department of Electrical and Computer Engineering

University of California, Santa Barbara, CA 93106-9560
http://www.bioimage.ucsb.edu/

ABSTRACT

In many neurophysiological studies, understanding the neu-
ronal circuitry of the brain requires detailed 3D models of the
nerve cells and their synapses. Typically, researchers build
the 3D models by manually tracing the 2D cross-sectional
profiles of the 3D structures from serial electron micrograph
(EM) stacks and then construct the models from these 2D con-
tours. While current computer-aided techniques can reduce
the tracing time, they often require extensive user interaction.
We propose a segmentation framework to extract the 2D pro-
files that is both fast and requires a minimal amount of user
interaction. The framework uses graph cuts to minimize an
energy defined over the image intensity and the flux of the
intensity gradient field. Furthermore, to correct segmentation
errors, our framework allows for efficient and intuitive editing
of the initial results.

Index Terms— graph cuts, electron micrograph, flux

1. INTRODUCTION

Understanding the neural connectivity in the brain requires
detailed 3D information of the neuroanatomy. Currently,
transmission electron microscopy (TEM) is the preferred
modality to obtain high magnification views of neuronal
membranes, synapses, and subcellular organelles. How-
ever to obtain 3D data, a tissue block must be shaved into
ultrathin (40-60 nm) serial sections and imaged individu-
ally. Afterwards, 2D cross-sections of various structures
are manually traced through the serial image stack and as-
sembled to reconstruct the 3D model. Although there are
software tools to perform the reconstruction (http://synapse-
web.org/tools/index.stm), the tracing task is mostly done
manually and remains tedious and time consuming. The
need for more automated segmentation tools becomes espe-
cially pronounced in large EM studies and is one of the main
bottlenecks in the creation of large anatomical databases [1].
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To facilitate more efficient information extraction, we pro-
pose a framework to segment neuronal structures from serial
EM images that is fast and requires a minimal amount of user
interaction. The segmentation is posed as a minimization of
an energy involving the image intensity and the flux of the
intensity gradient field, and graph cuts is used to compute
the globally optimal solution. The user needs to label only
a small set of pixels within the object without having to label
any background regions. We develop and test our algorithm
using several serial EM image stacks from the Synapse Web
[2]. Two example images are shown in Fig. 1.

There are several notable previous works on segmenting
objects in TEM images. Carlbom et al. [3] developed a frame-
work using parametric snakes to segment neurons, which re-
quires the user to provide good initializations and allows the
user to interact with the snakes to correct for errors. Fok et al.
[4] also used snakes to segment nerve fibers in EM images.
Although no user input is required, certain assumptions are
made regarding the shape, size, and membrane thickness of
the fibers that are not applicable to our dataset. Frangakis
and Hegerl [5] used a spectral approach for segmentation,
where the objects are segmented in descending order of their
saliency. However, it is not apparent that their technique can
allow for user interaction or editing. Recently, Chang et al. [6]
used graph cuts to segment textured regions in TEM images.
Their method assumes the object has discriminative texture
features that help to differentiate it from the background, but
that is not the case for our dataset. Finally due to space limita-
tions, we refer the interested reader to [7, 8] and the references
therein for a more thorough summary of seeded segmentation
algorithms and their applications to various types of biomed-
ical images.

2. GRAPH CUTS PRELIMINARIES

Before discussing our segmentation framework, we provide a
brief introduction to graph cuts. Image segmentation can be
posed as a pixel labeling problem such that, for a set of pixels
P and labels L = {0, 1}, we seek a labeling y : P → L that



minimizes the energy

E(y) =
∑
p∈P

ψp(yp) +
∑

p∈P,q∈Np

ψpq(yp, yq). (1)

Here ψp(yp) is the penalty for labeling pixel p ∈ P with label
yp ∈ L, and ψpq(yp, yq) is the penalty for the pairwise label-
ing of pixels p ∈ P, q ∈ Np with labels yp, yq ∈ L. Np de-
notes the set of pixels that are neighbors of p. Graph cuts can
be used to exactly and efficiently minimize Eq. (1) when ψpq
is a submodular function satisfying ψpq(0, 0) + ψpq(1, 1) ≤
ψpq(0, 1) + ψpq(1, 0) [9].

Before discussing graph cuts, we define the graph. Let
G = (V, E) be a directed weighted graph composed of a set
of nodes V and a set of directed edges E with nonnegative
weights. The set V consists of two types of nodes: neighbor-
hood nodes made up of the image pixels P and two terminal
nodes s and t. A directed edge from node p to node q is de-
noted (p, q) and has weight wpq . Note that (p, q) 6= (q, p).
We assume that for p, q ∈ P , if (p, q) ∈ E then (q, p) ∈ E and
wpq = wqp. In addition, all pixels p ∈ P are connected to s
by terminal edge (t-edge) (s, p) and to t by t-edge (p, t).

A subset of edges C ⊂ E is called an st-cut if the ter-
minal nodes are completely separated in the induced graph
G = (V, E − C). That is there are no directed paths from ter-
minal s to t when all edges in the cut are removed. Hence, the
cut partitions the nodes into disjoint subsets S and T where
s ∈ S and t ∈ T . For simplicity, we will refer to the st-cut
simply as a cut. The cost of the cut |C| is the sum of all the
edge weights in C, and the minimum cost cut (mincut) can be
found by solving an equivalent maximum flow problem [10].

In our notation, a pixel p is assigned label yp = 1 (object)
if p ∈ S and yp = 0 (background) if p ∈ T . As a result, each
cut produces a labeling y = {yp | p ∈ P, yp ∈ L} and hence
a corresponding energy E(y). The goal is to assign weights
to the graph’s edges such that the mincut cost |C| is equal to
the minimum energy E(y). As such, the unary penalty is
incorporated into the t-edge weights (t-weights) as: wsp =
ψp(0) and wpt = ψp(1) [9]. The remaining neighborhood
edge weights (n-weights) will be discussed subsequently.

3. INTERACTIVE SEGMENTATION

For a given EM image, the segmentation begins with the user
marking a set of pixels as belonging to the object (see middle
column of Fig. 1). By default, the pixels on the image borders
are labeled as background. Denote these preliminary object
and background pixel sets asO and B, respectively. The input
information is incorporated into the graph by the following t-
weight assignments:

wsp = K, ∀p ∈ O, (2a)
wpt = K, ∀p ∈ B, (2b)

where K is set to some large constant (106) to ensure that
O ⊂ S and B ⊂ T after the cut.

3.1. Pairwise penalty using image intensity

In the EM image, the object of interest usually does not ex-
hibit a distinct regional characteristic, such as intensity or tex-
ture, that discriminates it from the surrounding background
objects. The most distinguishing feature is the dark, albeit
thin membrane surrounding the object. To take advantage of
this feature, we use the region coherence penalty term [11]

ψpq(yp, yq) = |yp − yq| · g(xp, xq), (3)

where

g(xp, xq) =
1

‖p− q‖
exp

(
− (xp − xq)2

2σ2
x

)
. (4)

Here xp ∈ [0, 255] is the intensity value at p, ‖p − q‖ is the
Euclidian distance between p and q, and σx is a parameter set
to 20 in all experiments. Eq. (3) is minimized by setting the
n-weight wpq = g(xp, xq) ∀p ∈ P, q ∈ Np. Accordingly
a penalty g(xp, xq) is incurred only when the pairwise labels
{yp, yq} are different, which should be the case at the object
boundary. However at the boundary, g(xp, xq) is small due to
large intensity differences between the object and membrane,
and thus the cut is more likely to occur here than anywhere
else. At this point, we can set the remaining t-weights as
wsp = wpt = 0, ∀p ∈ P \ {O,B} (those not in Eq. (2))
and proceed with graph cuts. But as the middle column of
Fig. 1 shows, there are significant portions of the objects that
are mislabeled as background when using Eq. (3) alone.

3.2. Unary penalty using flux

The previous results are inaccurate because smaller cuts
(lower costs) are favored and degrade when the object mem-
brane is convoluted or contains gaps and noise. To improve
the accuracy, we use a regional bias base on the flux of the
intensity gradient field. Flux has been utilized in both level
set [12] and graph cut [11] methods mainly to improve seg-
mentation of thin structures such as blood vessels. In this
work, flux is used to enhance the regional bias around the
neuronal membranes. The added contrast prevents the cut
from “pinching off” elongated regions of convoluted or noisy
objects.

The flux of a vector field v through a continuous hyper-
surface S is given by [11]

ϕ(S) =
∫
S

〈v, n̂〉 dS, (5)

where n̂ is the unit normal to the surface element dS and 〈 , 〉
is the Euclidian dot product. Here, the field v is the normal-
ized gradient of the gaussian smoothed image, i.e. ∇Iσ

||∇Iσ|| . We
use σ = 3 for all results in this paper. Numerically, the flux
at a pixel p is computed by summing the dot products of the
gradient field with the outward normals of a disk with unit
radius and centered at p.
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Fig. 1. Original images 255× 382 (left), results with intensity alone (middle), and with intensity and flux (right).
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Fig. 2. Flux of gradient field of bottom left image in Fig. 1.

The flux for the bottom left image in Fig. 1 is shown in
Fig. 2. The flux is more positive in the lighter intensity regions
adjacent to the darker membranes and enhances the contrast
between the foreground object and its surrounding membrane.
We incorporate the flux into the graph using the t-weight as-
signments:

wsp = max (0, ϕ(p)) , ∀p ∈ P \ O, (6a)
wpt = −min(0, ϕ(p)), ∀p ∈ P \ B. (6b)

This formulation favors a cut in which the object’s flux is
maximized, and encourages the inclusion of convoluted por-
tions of the object.

The right column of Fig. 1 shows the results using both
flux and intensity information, with the same user input as
before. As shown, the segmented objects contain convoluted
regions that were previously missed. There are some minor
isolated background blobs inside the objects, but they can be
removed with simple morphological operations.

4. INTERACTIVE EDITING

In general, the segmentation may produce unintended results
because the algorithm parameters may be difficult to tune for

an entire dataset or because the energy formulation fails to
sufficiently capture the user’s domain knowledge. Allowing
the user to edit the results can be very beneficial and less time
consuming than parameter tuning. There are several graph cut
methods that allow for editing of the original solution [8, 13].
We base our editing framework on the energy formulation
presented in [13], but make some important and necessary
modifications in order to adapt it for our application.

Similar to [13], our editing energy makes use of the pre-
vious segmentation output, since it is assumed that that re-
sult is nearly correct. Second, only pixels that change their
labels during editing are penalized. Contrary to the formula-
tion in [13], our relabeling penalty is greater for label changes
that are farther from the edit marks, since these pixels are
less likely to be considered for relabeling in the user’s edit-
ing thought process. Furthermore, our proximity measure is
a function of the geodesic distance on the image intensity in-
stead of the Euclidian distance used in [13]. The geodesic
distance is a more intuitive measure because pixels separated
by more membranes or edges are less likely to belong to the
same object.

Assume that the previous binary segmentation result is y
with object and background pixel sets S and T , respectively.
The user edits y by specifying pixels that should be relabeled
(see Fig. 3). Then we seek a new labeling y′ that minimizes
the following energy:

E(y′) =
∑

p∈P,q∈Np

ψpq(y′p, y
′
q)

+
∑
p∈P

wspyp(1− y′p) +
∑
p∈P

wpt(1− yp)y′p. (7)

The pairwise penalty ψpq is given by Eq. (3), and wpq =
g(xp, xq) as before. The second term sums the costs of re-
labeling pixels p ∈ S as background, and the third term sums
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Fig. 3. Blue and green marks in the left image indicate pixels
that should be relabeled as background and object, respec-
tively. The edited result is shown on the right.

the costs of relabeling pixels p ∈ T as object. Denote the user
relabeled pixel sets as O′ for object and B′ for background.
The t-weights are then defined as:

wsp =

{
1− exp

(
−dg(p,B

′)
σg

)
, p ∈ S \ (O′ ∪ B′)

K, p ∈ O′
(8a)

wpt =

{
1− exp

(
−dg(p,O

′)
σg

)
, p ∈ T \ (O′ ∪ B′)

K, p ∈ B′.
(8b)

Here, dg(p,O′) and dg(p,B′) are the geodesic distances from
pixel p to the closest pixel in the user edited pixel sets O′ and
B′. The geodesic distance is computed using the Fast March-
ing algorithm [14], with the speed term a function of the im-
age gradient magnitude, i.e. ||v||. Fig. 3 shows an example
of the editing process. The left image contains edit marks
for a previous segmentation, and the right image shows the
edited result. In all experiments, σg is set to 20. For both the
results without and with flux in Fig. 1, after the initial user
input the segmentation takes less than a second to run using
a Matlab/C++ mex implementation. The editing process is
approximately ten times faster.

5. CONCLUSION

We presented a segmentation framework to extract 2D con-
tours of neuronal structures from serial EM images. Using
graph cuts, we minimize an energy based on the image in-
tensity and flux of the gradient field. We also proposed an
editing procedure, allowing the user to correct segmentation
errors. Our method is computationally fast and requires a
minimal amount of user input. Future work includes applying
our method to a more diverse set of EM images and obtaining
quantitative validation of our method against manually seg-
mented ground truth.
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