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ABSTRACT
This paper presents a method that reduces the computational
cost of template matching based on the Zero-mean Normal-
ized Cross-Correlation (ZNCC) without compromising the
accuracy of the results. A very effective condition is deter-
mined at a small and xed cost that allow to rapidly detect
a large number of mismatching candidates with no need to
compute the ZNCC score. Then, thanks to the use of an
additional set of conditions, the computation of the whole
ZNCC function is typically required only for a very small
number of candidates. Experimental results demonstrate the
effectiveness of our approach.

Index Terms— Template matching, ZNCC, cross corre-
lation, fast, exhaustive

1. INTRODUCTION AND RELATED WORK

The purpose of template matching is to detect which part of
an image is most similar to a given template. Template match-
ing is widely deployed for tasks such as quality control, de-
fect detection, robot navigation, face and object recognition,
edge detection [1]. Zero-mean Normalized Cross Correla-
tion (ZNCC) has been successfully employed as a function to
measure the degree of similarity between two image patches
due to its invariance with regards to af ne photometric distor-
tions.

The standard algorithm, or Full-Search (FS), used to per-
form ZNCC-based template matching simply scans the image
and at each point (x, y) it computes the ZNCC-score between
the template vector and the portion of the image centered in
(x, y) having the same size as the template (image candi-
date vector). Then the image coordinates of the global ZNCC
maximum locate the candidate most similar to the template.
Denoting as I , Ic and T , respectively, the image, candidate
and template vectors, and having each candidate and template
the same size M × N , the ZNCC function at pixel position
(x, y) is given by:

ZNCC(x, y) =
(Ic(x, y)− μIc(x, y)) ◦ (T − μT )
||Ic(x, y)− μIc(x, y)|| · ||T − μT || (1)

with μIc(x, y) and μT being respectively the mean intensity
value computed over Ic(x, y) and T , ◦ representing the dot
product between two vectors, and the two terms at the de-
nominator being respectively the L2 norm of zero-mean im-
age candidate and zero-mean template vectors. Hereinafter
the numerator of (1) will be referred to as η(x, y).

The FS algorithm turns out to be an expensive task: even
if incremental techniques [2], [3] can be adopted to ef ciently
compute for each point the image candidate mean values and
norms in (1), the complexity of η(x, y) is still of the order of
O(WHMN). A common alternative [4] computes the cross-
correlation in the frequency domain by means of the well-
known Fast Fourier Transform (FFT), yielding a complexity
of the order of O (WHlog2(WH)). This approach is exhaus-
tive, i.e. it guarantees to yield exactly the same results as the
FS, and turns out to be faster than the FS as the template size
approaches the image size and with large templates and im-
ages [4].

Another exhaustive approach aimed at speeding up ZNCC-
based template matching is the Zero-mean Bounded Par-
tial Correlation (ZBPC) technique [5]. This method relies
on two computationally ef cient upper-bounding functions
for η(x, y), β′

ZBPC(x, y) and β′′
ZBPC(x, y), that allow for

rapidly pruning mismatching candidates by testing:

min(β′
ZBPC(x, y), β′′

ZBPC(x, y))
||Ic(x, y)− μIc(x, y)|| · ||T − μT || ≤ ZNCCmax (2)

with ZNCCmax being the ZNCC maximum found among
previously evaluated candidates. If (2) holds then the cur-
rent candidate is guaranteed not to be the global maximum
and ZNCC computation need not being carried out. Nev-
ertheless, since the computation of both β′

ZBPC(x, y) and
β′′

ZBPC(x, y) involves calculating a partial cross-correlation
term on a subset of template and candidate vectors (i.e. on
nZBPC rows), then the speed-ups yielded by ZBPC on FS
are upper-bounded by N

nZBP C
.

Moreover, very recently a fast exhaustive scheme for
ZNCC-based block matching was proposed in [6]. By deter-
mining a monotonically decreasing equivalent expression of
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(1), a Partial Distortion Elimination [7] approach is applied in
order to safely terminate the computation of ZNCC as soon
as it gets below ZNCCmax.

In the next section a novel fast exhaustive technique,
known as Zero-mean EnhancedBoundedCorrelation (ZEBC),
is proposed. This technique aims at improving the ZBPC al-
gorithm and it is inspired by [8]. The two main novelties with
respect to ZBPC are represented by the use of two bounding
functions which do not require any partial cross-correlation
term computation at all and which can be demonstrated being
tighter to η(x, y) than β′

ZBPC(x, y) and β′′
ZBPC(x, y), and

by the de nition of an additional set of increasingly tighter
bounding functions.

2. THE ZEBC ALGORITHM

We now devise two novel bounding functions, β′(x, y) and
β′′(x, y), which allow to rapidly detect mismatching can-
didates without the need to compute any partial correlation
term. By means of a partitioning scheme similar to that de-
ployed in [8], each candidate and template vectors are subdi-
vided into r non-overlapping rectangular regions R1, · · · , Rr

of size M ×n, with n = N
r . We will refer to Ic,t(x, y) and Tt

as, respectively, the candidate and template subvectors corre-
sponding to region Rt, and to At as their cardinality (i.e. the
number of pixel in each region, At = n ·M ). Then, η(x, y)
can be seen as the sum of r partial terms ηt(x, y) each one
computed on its corresponding region Rt:

η(x, y) =
r∑

t=1

ηt(x, y) (3)

where:

ηt(x, y) =
(
Ic,t(x, y)− μIc,t(x, y)

) ◦ (Tt − μTt) (4)

By means of the application of the Cauchy-Schwarz inequal-
ity on (4) we can devise an upper-bound for term ηt(x, y):

β′
t(x, y) = ||Ic(x, y)− μIc(x, y)|| · ||T − μT || =

=
√
||Tt||2 + At · μT (μT − 2 · μTt) ·

·
√
||Ic,t||2 + At · μIc(x, y)

(
μIc − 2 · μIc,t

)
(5)

All terms in β′
t(x, y) relative to the image candidate can be ef-

ciently computed by means of incremental techniques such
as [2], [3], while the others, relative to the template, can be
computed once for all at start-up.

Additionally, equation (4) can be algebraically manipu-
lated as follows:

ηt(x, y) = Ic,t ◦ Tt +
+At

(
μIc(x, y) · μT − μTt · μIc(x, y)− μT · μIc,t(x, y)

)
(6)

Hence, by applying the Cauchy-Schwarz inequality on the
cross-correlation between Ic,t, Tt term in (6) we get an ad-
ditional upper-bound for η(x, y):

β′′
t (x, y) = ||Ic,t|| · ||Tt||+

+At

(
μIc(x, y) · μT − μTt · μIc(x, y)− μT · μIc,t(x, y)

)
(7)

Though different from β′
t(x, y), also this term can be com-

puted very ef ciently, partly at start-up and partly by means
of incremental schemes. It is worth pointing out that, since
both β′

t(x, y) and β′′
t (x, y) are computed on the same region

Rt, and since all regions are equally sized, their calculation
requires a reduced number of incremental scheme instances,
with bene ts for what concerns ef ciency and memory re-
quirements. Moreover, their computational complexity is in-
dependent from image and template sizes.

Thus, we propose a very effective upper-bound for η(x, y)
by choosing, for each region Rt, the term between β′

t(x, y)
and β′′

t (x, y) that better approximates ηt(x, y):

βB(x, y) =
r∑

t=1

min (β′
t(x, y), β′′

t (x, y)) (8)

By comparing (3) and (8) it is easy to infer the bounding prop-
erty of βB(x, y). Hence, for each candidate βB(x, y) can be
used to reliably detect mismatching candidates previously to
the computation of the ZNCC term. If condition

βB(x, y)
||Ic(x, y)− μIc(x, y)|| · ||T − μT || < ZNCCmax (9)

is veri ed, then candidate Ic(x, y) is guaranteed not to be
the global maximum and its ZNCC score does not need to
be computed.

For the sake of ef ciency, since the computation of
βB(x, y) requires the computation of both β′

t(x, y), β′′
t (x, y)

terms on all regions, based on experimental evidence we
suggest to compute rst

β′′(x, y) =
r∑

t=1

(β′′
t (x, y)) (10)

and then to use it to detect a rst set of mismatching candi-
dates. The computation of (8) is carried out only for those
candidates that are not rejected by means of (10). Though
experimentally it seemed more favourable to choose β′′

t (x, y)
rather than β′

t(x, y) as the bounding terms to be computed
rst, a deeper study concerning a more advanced scheme

aimed at exploiting these terms more effectively is currently
under development.

Now, for all candidates not rejected by means of either
(8) or (10) we propose to re ne the search for mismatching
candidates by means of a set of increasingly tighter bound-
ing functions. First, a bounding function can be determined
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Fig. 1. Dataset used for the experimental results

by substituting in βB(x, y) the bounding term computed on
region R1 with its corresponding η1(x, y) term:

γ1(x, y) = η1(x, y) +
r∑

t=2

min (β′
t(x, y), β′′

t (x, y)) =

βB(x, y)−min (β′
1(x, y), β′′

1 (x, y)) + η1(x, y) (11)

where the right hand term in (11) shows how to ef ciently
compute γ1(x, y) from βB(x, y). γ1(x, y) represents a
tighter approximation of η(x, y) compared to β′′(x, y) and
βB(x, y), though computationally more expensive, hence can
be used to classify as mismatching those candidates which
were previously not rejected by β′′(x, y) and βB(x, y).

Following this approach, by substituting at each step
the current bounding term with its corresponding ηt(x, y)
term, up to r − 1 additional upper bounding functions
can be overall deployed for candidate rejection, that is
γ1(x, y) · · · γr−1(x, y), the last one being:

γr−1(x, y) = γr−2(x, y)−
min

(
β′

r−1(x, y), β′′
r−1(x, y)

)
+ ηr−1(x, y) (12)

If not even γr−1(x, y) is able to reject the current candidate,
then the computation of the ZNCC is completed by calculat-
ing ηr(x, y).

It is worth pointing out that similarly to ZBPC, also
ZEBC would bene t of the use of a proper strategy to ini-
tialize ZNCCmax with an initial guess aimed at increasing
the ef ciency of the bounding functions applied. Hence, we
propose to use the same coarse-to- ne strategy adopted in
[5]. It is worth pointing out that this initialization strategy can
not violate the exhaustivity of the search, since the initialized
ZNCC maximum can never be higher than the real maximum.
Thus, ZEBC is always FS-equivalent.

3. EXPERIMENTAL RESULTS

In this section we propose an experimental evaluation aimed
at assessing the bene ts brought in by the proposed method,
ZEBC, by comparing it to the other state-of-the-art fast ex-
haustive template matching approaches. As a benchmark for
evaluation we propose a typical quality assessment setup,
where 5 templates, T 1 · · ·T 5 of size 64× 64 were uniformly
extracted from a reference image of a product item and then
searched in the images of different items, as if on a produc-
tion belt. In particular, 5 different images of as many items,
I1 · · · I5, are used, each one sized 640× 480. This dataset is
shown in Fig. 1.

As for the comparison, ZEBC is tested against FS,
FFT-based and ZBPC. FS deploys incremental calculation
schemes to ef ciently compute the candidate norms and mean
values in (1). ZBPC parameter nZBPC

N was optimally tuned
to 0.07. As for FFT, we used the implementation proposed in
well-known OpenCV library, optimized with SIMD instruc-
tions. For what regards ZEBC, parameter r was set to 8. In
addition, for fairness of comparison, when tested against the
FFT also for ZEBC a SIMD optimization is used. Finally, the
sampling factor k used for the initial multi-resolution scheme
[5] employed by both ZBPC and ZEBC was set to 4.

Table 1 reports the speed-ups (ratios of measured execu-
tion times) of the ZEBC algorithm against, from left to right,
FS, ZBPC and FFT, obtained on a PC running Linux with
3.06 GHz clock AMD CPU. The last row of the table reports
the mean speed-up reported by ZEBC against the three algo-
rithms. From the table it can be noted that ZEBC is always
able to notably speed-up the FS algorithm, speed-ups rang-
ing between 11.5 and 28.5. Moreover, ZEBC is always faster
than ZBPC and FFT, mean speed-ups being respectively 2.1
and 2.5. It is also worth noting that ZEBC, despite being a
data-dependent technique, showed a rather limited range of
variations of the measured speed-ups.
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Table 1. Measured speed-ups: ZEBC Vs. FS, ZBPC and FFT-based algorithms.
ZEBC vs FS ZEBC vs ZBPC ZEBC vs FFT

I1 I2 I3 I4 I5 I1 I2 I3 I4 I5 I1 I2 I3 I4 I5
T1 17.2 15.1 14.7 24.5 23.5 1.5 1.3 1.5 2.1 2.1 2.4 2.1 2.1 3.0 2.9
T2 15.2 15.6 11.6 11.5 13.8 1.4 1.4 2.3 2.3 1.4 2.2 2.3 1.8 1.8 2.0
T3 19.3 21.4 17.7 22.8 15.9 1.7 1.8 1.6 2.0 1.4 2.6 2.8 2.4 2.9 2.2
T4 14.3 15.4 19.0 17.5 15.7 1.3 1.4 1.6 1.6 1.4 2.1 2.2 2.6 2.4 2.2
T5 27.7 27.8 28.5 28.0 12.4 3.9 4.9 3.1 3.4 3.9 3.3 3.4 3.4 3.4 1.8

Mean 18.6 2.1 2.5

Table 2. Measured speed-ups on dataset affected by af ne photometric distortions.
ZEBC vs FS ZEBC vs ZBPC ZEBC vs FFT

L1 L2 L3 L4 L5 L1 L2 L3 L4 L5 L1 L2 L3 L4 L5
T1 13,7 12,8 12,2 19,7 18,2 1,3 1,2 1,3 1,8 1,7 2,0 1,9 1,9 2,7 5,3
T2 12,7 13,4 10,6 10,4 11,8 1,3 1,3 2,2 2,2 1,3 2,0 2,0 1,7 1,7 1,9
T3 15,2 16,7 14,1 17,5 19,1 1,4 1,5 1,3 1,6 0,8 2,2 2,4 2,1 2,5 2,0
T4 8,5 9,1 9,5 10,6 10,8 3,6 2,4 2,5 1,7 1,9 1,4 1,5 1,5 1,8 1,7
T5 23,2 23,0 23,6 23,6 10,4 3,4 4,1 2,8 3,0 3,3 3,0 3,0 2,0 3,1 1,7

Mean 14,8 2,0 2,2

In addition, we also propose a further experiment where
synthetic illumination distortions are applied between images
and templates. In particular, all images are transformed ac-
cording to an af ne mapping function (gain = 0.25, bias =
−20), as shown in Fig. 1, images L1 · · ·L5. This is moti-
vated by the fact that ZNCC is typically employed in those
cases where photometric distortions which can be assimilated
to af ne illumination changes are present between image and
template, since ZNCC is invariant to this kind of transforma-
tions. Table 2 shows the speed-ups reported with this dataset
by ZEBC against FS, ZBPC, FFT. By comparing the two ta-
bles it can be noted that, despite the notable distortions af-
fecting the images, ZEBC is always the fastest algorithm, its
speed-ups being lightly affected by the introduced distortions.
From a theoretical point of view this can be explained since
the effectiveness of all bounding functions applied by ZEBC,
though not demonstrated here for lack of space, is robust to
the presence of constant multiplicative and additive factors
within I and T . Hence the decrease of speed-ups between the
two tables has to be mainly ascribed to the distortions due to
intensity quantization and saturation arising when such kind
of synthetic transformation is applied.

4. CONCLUSIONS AND FUTURE WORK

We have presented ZEBC, a FS-equivalent technique to
speed-up ZNCC-based template matching. Experimental
results demonstrate that ZEBC is currently faster compared
to the other FS-equivalent template matching approaches.
Future work is aimed at comparing ZEBC with the very re-
cent approach proposed in [6] within a template matching

framework.
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