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ABSTRACT

We propose new discrete-to-continuous interpolation models for
hexagonally sampled data, that generalize two families of splines
developed in the literature for the hexagonal lattice, to say the hex-
splines and three directional box-splines. This extension is inspired
by the construction of MOMS functions in 1-D, that generalize and
outperform classical 1-D B-splines [1]. Our new generators have
optimal approximation theoretic performances, for exactly the same
computation cost as their spline counterparts.

Index Terms— hexagonal sampling, three-directional mesh, in-
terpolation, 2-D lattices, multi-dimensional splines, linear shift in-
variant signal spaces, approximation theory.

1. INTRODUCTION

Image interpolation consists in defining a spatially continuous func-
tion fitting a discrete image. This reconstruction process is essential
to many analysis and resampling tasks such as image scaling, rota-
tion, registration, edge detection. . . Most images are available on
the Cartesian lattice Z

2, although hexagonal sampling is known to
have better geometrical and topological properties, and to enable a
more efficient representation of 2-D signals [2, 3]. Recent progress
has brought hexagonal sampling into the domain of consumer elec-
tronics and there exists now imaging sensors that acquire on the
hexagonal lattice, e.g. [4]. This is likely to foster a renewed interest
for hexagonal image processing and justifies the study of methods
specifically dedicated to the treatment of hexagonally sampled data.

The generic problem of interpolating data sampled on the lattice
Λ = RZ

2 consists in estimating the function f(x) from which we
are only given the samples values s[k] = f(Rk), k ∈ Z

2 at the
lattice sites. In this work, we consider the hexagonal lattice, corre-
sponding to

R =

s
2√
3

»
1 1/2

0
√

3/2

–
. (1)

When f is assumed to be band-limited, Shannon’s theorem guaran-
tees perfect reconstruction of f(x) using interpolation with a low-
pass cardinal-sine function. However, this ideal interpolator has an
infinite support and its use generates visually disturbing ringing ar-
tifacts along edges. Instead, practitioners rely on a more localized
generator ϕ(x) with compact support. For images sampled on the

∗The first author is supported by the Marie Curie Ex-
cellence Team Grant MEXT-CT-2004-013477, Acronym
MAMEBIA, funded by the European Commission. Contact:
laurent.condat@helmholtz-muenchen.de.

square lattice, separable extensions of 1-D algorithms are available,
with a vast literature that mainly relies on piecewise polynomial
functions. Spline models are particularly popular, since they con-
jugate optimal approximation properties with simplicity and easy
implementation [5, 6]. For data available on uniform hexagonal lat-
tices, there are mainly two families of non-separable 2-D splines
that exploit the geometric advantages of this sampling scheme, like
its twelve-fold symmetry, to say, the hex-splines and the three-
directional box-splines. We present them briefly in Section 2 along
with some basics of multi-dimensional interpolation. In Section 3,
we propose new 2-D functions, which generalize these two families
of splines. Our construction is inspired by the design of the family
of MOMS functions in 1-D [1], that encompasses the B-splines as a
particular case. In these extended set of functions, we choose new
generators with better approximation theoretic performances as box-
splines and hex-splines for the same support size and degree, hence,
an identical computation cost.

2. SPLINE INTERPOLATION ON THE HEXAGONAL
LATTICE

We first introduce some notations. The Fourier transform of f(x) ∈
L2(R

2) is f̂(ω) =
R

R2 f(x) exp(−jωTx)dx. We also define the
discrete autocorrelation sequence af of f by af [k] = (f̄ ∗ f) (Rk),
where f̄(x) = f(−x). Convolutions are denoted by ∗, and a star
∗ indicates the complex conjugate. f(x) = O(g(x)) means that
lim sup‖x‖→0 |f(x)/g(x)| < ∞ and f(x) ∼ g(x) denotes the
equivalence lim‖x‖→0 f(x)/g(x) = 1.

The effect of sampling a function f(x) on the hexagonal lat-
tice is to replicate its spectrum f̂(ω) at the lattice sites 2π bRk,
where bR = (R−1)T. Accordingly, the Fourier transform of a dis-
crete signal s = (s[k])k∈Z2 sampled on the hexagonal lattice is
ŝ(ω) =

P
k∈Z2 s[k] exp(−jωTRk). With s−1, we denote the

signal with Fourier transform 1/ŝ(ω). The Z-transform of s is
S(z) =

P
k∈Z2 s[k]z−k, where z−k = z−k1

1 z−k2
2 . For a more

complete overview on lattices and signals defined on them, we refer
to [2, 7].

Interpolating the discrete signal s using a generator ϕ(x) con-
sists in reconstructing the function (see [6])

fint(x) =
X
k∈Z2

c[k]ϕ(x − Rk), (2)

where the coefficients c[k] are obtained by prefiltering the data, in
order to satisfy the interpolation condition fint(Rk) = s[k] for
every k ∈ Z2; That is, c = s ∗ pint using the interpolation prefilter
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Fig. 1. The box-splines χ2n (a) and hex-splines ηL (b) are piece-
wise polynomial over triangles (dotted lines). Their supports are
hexagons (solid lines) with surface area 3n2 and L2, respectively.

defined by p−1
int [k] = ϕ(Rk). A Fourier domain implementation

is appropriate for this prefiltering step, see e.g. [8, Appendix E].
Note that in practical applications, most of the computation time is
consumed not by the prefiltering step, but by the reconstruction (2)
itself. In fact, the size of the support of ϕ is the most crucial element
that determines the computational complexity of an interpolation
algorithm [6].

The three directional box-splines and hex-splines are piecewise
polynomial functions that form two different multi-dimensional ex-
tensions of the 1-D B-splines, appropriate for interpolation on the
hexagonal lattice. Among the vast family of box-splines, the three-
directional ones are non-separable and twelve-fold symmetric, hence
adapted to the hexagonal lattice. They can be defined by bχ2n(ω) =Q3

i=1 sinc(ωTvi/2)
n, where n ≥ 1, sinc(x) = sin(x)/x and

v1 =
q

2√
3

»
1/2

−√
3/2

–
, v2 =

q
2√
3

»
1/2√
3/2

–
, v3=

q
2√
3

» −1
0

–
,

(3)
as depicted in Fig. 1. Recently, the authors derived an explicit an-
alytical formula for χ2n with arbitrary n, along with an efficient
implementation [9].

Hex-splines are another family of functions, proposed recently
in [8], built by successive convolution: ηL = ηL−1 ∗ η1, for every
L > 1, where the first-order hex-spline η1 is simply the indicator
function of the Voronoi cell of the lattice Λ. The expressions of the
hex-splines in the Fourier domain, as well as their properties, are
given in [8] and [10]. ηL(x) has a compact hexagonal support, as
shown in Fig. 1.

Box-splines [11] have numerous practical applications, e.g. in
geometric modelling and multiscale representation systems [12]
while hex-splines found applications in printing [13]. For a plot of
the first orders box- and hex-splines, see [10, Fig. 3]. Note that due
to the convolution properties, the discrete autocorrelations satisfy
aηL [k] = η2L(Rk) and aχ2n [k] = χ4n(Rk).

3. NEW HEXAGONAL SPLINE GENERATORS

3.1. Assessment of the Interpolation Error

Our goal is to construct new functions ϕ showing an interpolation
error e2 =

R
R2

˛̨
f(x) − fint(x)

˛̨2
dx smaller than with hex-splines

and box-splines. A remarkable result of approximation theory tells
us that this error can be estimated very accurately by means of the
error kernel E(ω) in the frequency domain (see [14] for the exact
meaning of “≈” in (4); exact equality holds in many situations, as

well as in a stochastic sense):

e2 ≈ 1

(2π)2

Z
R2

˛̨
f̂(ω)

˛̨2
E(ω) dω, (4)

where

E(ω) = 1 − |ϕ̂(ω)|2
âϕ(ω)

+ âϕ(ω)

˛̨̨̨
p̂int(ω) − ϕ̂(ω)∗

âϕ(ω)

˛̨̨̨2
. (5)

In practice, most energy of images is concentrated in the low-
frequency part of the spectrum, which implies that the error is
dominated by the behavior of the error kernel at the origin. An
asymptotic analysis at ω = 0 yields, in polar coordinates ω =
(‖ω‖ cos(θ), ‖ω‖ sin(θ)),

E(ω) ∼ Cint(θ)‖ω‖2L, (6)

where Cint is called the asymptotic constant of ϕ [14] and L is the
approximation order ofϕ, defined by the Strang-Fix conditions [15]:

ϕ̂(0) 
= 0 and ϕ̂(ω − 2π bRk) = O(‖ω‖L) for every k 
= 0.
(7)

Note that the subscript numbers of χ2n and ηL are their respective
approximation orders.

Thus, it is desirable to choose ϕ having an approximation or-
der as high as possible, since this parameter determines the flatness
of the error kernel around the origin, hence the ability to reproduce
the low-frequency content of f with small error. Therefore, the ap-
proximation order is the main parameter that rules the interpolation
quality, as shown by many numerical evidences [6, 16, 10]. How-
ever, the size of the support of ϕ grows with L, thus a tradeoff be-
tween interpolation quality and computational complexity has to be
achieved.

3.2. Construction of the new families of functions

In the 1-D case, it has been showed that there is a closed family
of functions having the shortest support, of size L, for a given ap-
proximation order L [1]. These functions are called “MOMS”, for
“maximum order with minimal support”. They are optimal, since
they achieve the best compromise between interpolation quality and
computational complexity [1, 6]. The centered B-spline of degree n,
βn(x), is a MOMS. In fact, every MOMS with approximation order
L can be expressed as a linear combination of βL−1(x) and its suc-
cessive derivatives. That is, a normalized symmetrical MOMS ϕ(x)
with approximation order L satisfies

ϕ̂(ω) = β̂L−1(ω) +

(L−1)/2X
i=1

aiĥ(ω)iβ̂L−2i−1(ω) (8)

for some coefficients ai, where h is the second-order finite difference
filter [−1 2 − 1] (that is, ĥ(ω) = 2 − 2 cos(ω)).

Inspired by the 1-D construction of MOMS, we propose new
functions, that we note BML(x) and HML(x), that extend the
families of box-splines and hex-splines, respectively. In order to
obtain a construction similar to the form (8), we first assess the two
following properties.

PROPERTY 1: Let us consider two 2-D functions φ1 and φ2 both
with convex compact support, and a filter h such that h[k] 
= 0 only
at the sites Rk included in the support of φ1 (or on its boundary).
We define φ3 = φ1 ∗ φ2 and φ4 =

P
k∈Z2 h[k]φ2(x−Rk). Then,

the support of φ4 is included in the one of φ3.

1257



PROOF: Let x0 be such that φ3(x0) = 0. Since
φ3(x0) =

R
R2 φ1(x)φ2(x0 − x)dx then the supports of φ1

and φ2(x0 − ·) are disjoint. Consequently, if φ1(Rk) 
= 0, then
φ2(x0 − Rk) = 0. Hence, φ4(x0) = 0.

PROPERTY 2: Let us consider two functions φ1 and φ2, with
approximation order L1 and L2 ≤ L1 respectively, and a filter h
(localized on Λ) such that ĥ(0) = O(‖ω‖L1−L2). Then φ3 =
φ1 +

P
k∈Z2 h[k]φ2(x − Rk) has approximation order L1.

PROOF: cφ3(ω) = cφ1(ω) + ĥ(ω)cφ2(ω). Since ĥ(ω) is
2πΛ̂-periodic, we can check that the Strang-Fix conditions of order
L1 in (7) are satisfied for cφ3.

We now introduce the fiter h depicted in Fig. 2 (c). Equivalently,
H(z) = 6 − (z1 + z2 + z2z

−1
1 + z−1

1 + z−1
2 + z1z

−1
2 ). For every

L ≥ 1, we define a box-moms BML(x) (if L is even) and a hex-
momsHML(x) as a function having the respective form

dBML(ω) = bχL(ω) +

(L−1)/2X
i=1

aiĥ(ω)i bχL−2i(ω), (9)

ĤML(ω) = bηL(ω) +

(L−1)/2X
i=1

aiĥ(ω)i bηL−2i(ω), (10)

for some coefficients ai. One can easily check that ĥ(ω) =
O(‖ω‖2). Moreover, h has its support included in the ones of χ2(x)
and η2(x). As a consequence of the Properties 1 and 2, BML(x)
and HML(x) have approximation order L and the same support
as χL(x) and ηL(x), respectively, see Fig. 1. However, neither the
splines nor the new functions are true MOMS, in the sense that holds
in 1-D. It can be conjectured that a 2-D function of approximation
order L should have a support of minimal size L(L + 1)/2, but this
is an open question, to our knowledge.

3.3. Approximation-theoretically optimal functions

We now focus on the issue of choosing, among the hex-moms or
box-moms family of given order L, an “optimal” representant; that
is, we look for the best coefficients ai in (9) or (10). Our purpose is
to minimize the error kernel E(ω) associated to ϕ, that rules the in-
terpolation quality; hence, we want to minimize the asymptotic con-
stant Cint in (6). Actually, numerical evidences have shown that the
minimization of the asymptotic constant, among a family of func-
tions having the same approximation order L, yields significant im-
provements for image processing tasks [1, 10].

For an approximation order L ≤ 2, there is no free parameter in
(10) and (9), and the hex-moms and box-moms revert to hex-splines
and box-splines. Since, in practical applications, L = 4may provide
a sufficient quality, while the implementation may become burden-
some for higher values of L, we concentrate on designing an optimal
hex-moms HM3(x) and an optimal box-spline HM4(x). We can
write them in the spatial domain as

HM3 = η3(x) + α
X
k∈Z2

h[k]η1(x −Rk) (11)

with associated constant, obtained after some calculations using Tay-
lor series in (5):

Cint(θ) =
5
√

3

36

`
α +

7

1800

´2
+

7039 − 1595 cos(6θ)

4408992000

√
3 (12)

ϕ η1 χ2 η2 η3 χ4 HM3 BM4

Lena 35.86 42.16 41.87 46.75 47.16 46.78 47.63
Barbara 29.24 33.60 33.31 39.64 40.77 39.85 41.85
Baboon 28.09 31.88 31.57 36.31 36.88 36.38 37.60
Lighthouse 29.50 34.92 34.65 41.44 42.43 41.60 43.55
Goldhill 34.61 39.39 39.10 44.15 44.74 44.22 45.44
Boat 32.82 37.75 37.48 41.63 41.91 41.63 42.28
Peppers 35.33 39.66 39.12 42.95 43.09 42.89 43.35

time, in s 0.1 0.1 0.3 1.4 1.4 1.4 1.4

Table 1. PSNR obtained for the resampling experiments between
the Cartesian and hexagonal lattices, as described in Section 4.

and
BM4 = χ4(x) + β

X
k∈Z2

h[k]χ2(x −Rk) (13)

with associated constant

Cint(θ) =
193

3135283200
+

3

160

`
β+

11

1296

´2− cos(6θ)

7257600
−β cos(6θ)

60480
.

(14)
Therefore, the desired value providing the optimal hex-moms of or-
der 3 is α = −7/1800. For the box-moms, we choose to minimize
the average value of Cint(θ) over θ. This amounts to minimizing
the asymptotic interpolation error for isotropic signals. Hence, our
optimal box-moms of order 4 is defined with β = −11/1296.
An alternative design would be to look for β such that Cint(θ) is
independant of θ, to enforce an asymptotic interpolation quality
equal in every direction. This yields β = −1/120, which is very
close to our adopted value for this parameter.

We have to mention that, in another work [10], we used the
same minimization process to optimize, for a given generator, the
prefiltering step c = s∗p yielding the coefficients c[k] in (2); that is,
the interpolation prefilter pint was replaced by a quasi-interpolating
prefilter. The reconstructed function does not interpolate the sam-
ples s[k] any more, but the reconstruction error is reduced. This
approach may be combined with the one in the present work, for
global optimization of both the function ϕ and the prefilter p, in sit-
uations where it is not necessary to enforce the exact interpolation
condition. Also, we can find optimal “moms” functions for other re-
construction situations, like orthogonal or oblique projections in the
reconstruction space, instead of interpolation.

4. EXPERIMENTAL VALIDATION

In order to quantify numerically the gain offered by our new func-
tions, we propose the following resampling setting. First, a standard
test image is resampled from its supporting Cartesian lattice to the
hexagonal one with same density, using separable cubic O-MOMS
interpolation, whose high fidelity is well known [1, 6]. The sam-
ples s[k] of this new image, located on the hexagonal lattice, are
considered as input for the proposed interpolation methods. The in-
terpolated function fint(x) is then resampled on the initial Cartesian
lattice, defining a final image that is compared to the reference im-
age. We applied this setting to seven classical 512 × 512 images of
the literature, using mirror conditions at the boundaries. The PSNR
measures between the resampled and ground-truth images for this
test set are summarized in Tab. 1. The last row of this table indicates
computation times, for a C code running on a 1.6GHz PC).
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Fig. 2. (a) hex-moms function HM3(x) and (b) box-moms function BM4(x), both with optimal parameters α and β determined in Sect.
3.3. In (c), the finite difference filter used for their construction.

We considered for generators in our test the hex-splines of order
1 to 3, the box-splines of order 2 and 4, and our two new genera-
tors HM3(x) and BM4(x). As a result, the hierarchy between the
generators with respect to the approximation order is respected, as
predicted by the theory. The gain provided byHM3 over η3 is small
(0.07dB in average), but the one of BM4 over χ4 is quite substan-
tial (0.69dB in average). Interpolation with BM4 also outperforms
the combination of χ4 with the best quasi-interpolation prefilter pro-
posed in [10].

We insist on the fact that the quality improvement of our ap-
proach is obtained at no expense, since the new functions and their
spline counterparts have the same supports and polynomial degrees;
hence, the computation cost is exactly the same.

5. CONCLUSION

We proposed in this work a generic method for designing new gen-
erators, well suited for interpolation on the hexagonal lattice, by en-
larging existing families of multi-dimensional splines. By minimiz-
ing the asymptotic approximation error, we obtained new functions
with superior performances over their spline counterparts, for the
same computation time. The ideas are straightforward to extend to
any lattice and in any dimension; for instance, a box-moms exten-
sion of the 3-D box-spline deployed on the BCC lattice could yield
great benefits for high-quality visualization of 3-D data [17].
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