Abstract:
The appearances of the tracked object and its surrounding background usually change during tracking. As for tracking methods using subspace analysis, fixed subspace basis...Show MoreMetadata
Abstract:
The appearances of the tracked object and its surrounding background usually change during tracking. As for tracking methods using subspace analysis, fixed subspace basis tends to cause tracking failure. In this paper, a novel tracking method is proposed by using incremental 2D-LDA learning and Bayes inference. Incremental 2D-LDA formulates object tracking as online classification between foreground and background. It updates the row- or/and column-projected matrix efficiently. Based on the current object location and the prior knowledge, the possible locations of the object (candidates) in the next frame are predicted using simple sampling method. Applying 2D-LDA projection matrix and Bayes inference, candidate that maximizes the posterior probability is selected as the target object. Moreover, informative background samples are selected to update the subspace basis. Experiments are performed on image sequences with the object’s appearance variations due to pose, lighting, etc. We also make comparison to incremental 2D-PCA and incremental FDA. The experimental results demonstrate that the proposed method is efficient and outperforms both the compared methods.
Date of Conference: 12-15 October 2008
Date Added to IEEE Xplore: 12 December 2008
ISBN Information: