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ABSTRACT

We present an approach to decomposing branching volume

data into sub-branches. First, a metric is proposed for evalu-

ating local convexities in volumetric data, and it is a criterion

for global selection of tip points. Second, a multi-path grow-

ing strategy is adopted to segment the volumes based on a

DFS transformation starting from the tips. Experiments show

that this approach is capable of generating desirable compo-

nents and reasonable segmentation boundaries of a volume.

Index Terms— volume decomposition, feature point de-

tection, distance transformation

1. INTRODUCTION

Shape decomposition gains a great interest in computer vi-

sion and graphics due to its broad applications, such as in

shape analysis [1], skeleton extraction [12], texture mapping

[11], and modeling by examples [5]. Many approaches have

been proposed in recent years aiming at different kinds of ob-

jects: from medical MRI or CT data [15] to laser data [4],

from mesh models [2] [7] to point clouds [13] and volume

data [3]. In the paper, we concentrate on the decomposition of

branching volume data, which is useful to medical and botan-

ical applications in automatic endoscopic navigation [6] and

accurate skeleton extraction for reconstruction [15, 4].

Among the decomposition approaches, features are widely

used as seeds for clustering [9, 8, 14, 10]. Katz et al. [8] de-

tected feature points by choosing those with local maxima

of geodesic distances in mesh models, and chose those ly-

ing on a convex hull as seed features. Zhang et al. [14]

sampled seed faces based on distances to several uniformly

distributed faces. Yamazaki et al. [13] treated points with

local maxima of geodesic distances in point-based models

as the feature points, followed by a hierarchical procedure

to segment the models composed of supernodes which are

determined by the local features. In the approaches men-

tioned above, feature points are locally detected and there

are no quantitative criterions to evaluate potential features in

a global view. Krayevoy et al. [10] presented a convexity

metric to generate seed patches, which relies only on a single

threshold parameter. Their approach is effective for mesh

models. However, the metric is not appropriate for volumet-

ric data and the number of the decomposed components is not

necessarily an indicator of the volume structures but depends

on the threshold. Zhou et al. [15] adopted a DFS (Distance

From a Source point) transformation to find the tip features of

branching volumes. However, their seed points require man-

ual labeling which is inconvenient when lots of disconnected

branches appear in a data set. Furthermore, they provide no

description for the local properties of tip features, and thus

their decomposition algorithm suffers seriously from noises.

In the paper, we present a quantitative criterion to evaluate

local convex feature voxels in volumetric data. Feature vox-

els with large values are treated as tips. Next, with these

tips, decomposition is performed by clustering, i.e. voxels

on the same branch are grouped together based on the DFS

transformation with the same index corresponding to a tip. A

further segmentation procedure at ramifications, where more

than one sub-branches meet, produces smooth and reasonable

boundaries between branches.

The remainder of the paper is organized as follows: In

Section 2, we present a tip feature detection algorithm in de-

tail. Section 3 describes how to decompose a branching vol-

ume into desirable components. Results in Section 4 demon-

strate the validity of our algorithm. Section 5 draws conclu-

sions.

2. TIP FEATURE DETECTION

In this section, we address the issue of tip feature detection in

volumetric data. As [10], our feature detection algorithm is

based on a convexity criterion. There are two new aspects in

the algorithm. 1) It is able to quantify local convexity in the

volumetric data by using a score representing local sharpness.

2) It allows for global intuitive feature selection based on the

scores.

Our feature detection algorithm is designed for volumet-

ric data sets. Other 3D data representations such as meshes

should be converted to voxels first. To compute the sharp-

ness property near a voxel, its L-ring neighborhood (The 1-
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ring neighborhood of the voxel is its 26 closest neighbors) are

used. L is an integer given by users.

Given a voxel �X0 in a volume, we can intuitively denote

the extending quantity of a voxel �X l
n in ring l along a direc-

tion vector �Vi as:

rl
n(�Vi) = ( �X l

n − �X0)T �Vi. (1)

The sharpness of �X0 is defined as the sum of the extending

quantities of all the L rings of voxels along an optimal direc-

tion �V0:

S(�V0) =
L∑

l=1

1
N l

N l∑

n=1

rl
n(�V0), (2)

where, Nl is the voxel number in ring l.
An intuitive 2D illustration is given in Fig. 1, in which

the voxel C2 is said to be sharper than the voxel C1 since

that with the same L, the neighborhood of C2 is obviously

more extended along the direction vector �V2 than that of C1
along �V1. Here, �V1 and �V2 are drawn to be nearly optimal by

intuition.

1V

2V

Fig. 1. A voxelized triangle.

To compute the optimal direction �V0, we maximize the

quantity given by:

S(�Vi) =
L∑

l=1

1
N l

N l∑

n=1

rl
n(�Vi), (3)

i.e.
�V0 = argmax

Vi

(S(�Vi)), (4)

The constraints for (3) are:

�V T
i

�Vi = 1, (5)

and

rl
n(�Vi) > 0,∀ �X l

n. (6)

However, since the distances between a voxel and its clos-

est neighbors (6 face ones, 12 edge ones and 8 corner ones)

are different, we can not simply evaluate the extendedness of

voxel �X l
n by its Euclidian distance to �X0 as defined in (1). To

solve this problem, we recompute the extendedness ring by

ring and replace the real distance from a voxel to one of its

neighbors in the upper ring with 1. This calculation scheme

is similar to that of the 1-1-1 distance propagation in [15].

rl
n(�Vi) is recomputed recursively as follows:

rl
n = 0

l′ = l
while l′ > 0

find a closest neighbor �X l′−1
n for �X l′

n in ring l′ − 1

rl
n = rl

n +
( �X l′

n − �X l′−1
n )T �Vi

|| �X l′
n − �X l′−1

n ||
l′ = l′ − 1

endwhile

To obtain tip features according to the mathematical de-

scription above, we first compute the optimal axis �V0 by max-

imizing (3) with constraints (5) and (6). The sharpness of �X0

is then computed by (2). All the voxels’ sharpness quantities

form a score field. Based on the field, an initial feature selec-

tion is performed by a local suppression (in L-ring neighbor-

hood) to eliminate the competition arising from voxels near

sharp voxels. Next, we sort the remaining voxels in order of

their scores. At last, the N (given by users) top features are

chosen as tips used for the following decomposition.

3. VOLUME DECOMPOSITION

In this section, we proceed to decompose a branching vol-

ume with its tip features by a DFS transformation [15] and

generate reasonable boundaries between segments by a seg-

mentation procedure at ramification points.

3.1. Distance transformation

DFS transformation is a recursive voxel-by-voxel propagation

which brings each voxel in the volume a distance value to the

single start point. In our algorithm, we perform N (the num-

ber of tips) times of DFS transformations on the volume. Each

transformation starts from a tip feature point and generates a

distance field of the volume to that specified tip.

3.2. Ramification point determination

Based on the distance transformation, voxels with the same

distance value can be regarded as a layer, which is similar in

part to a sphere wave with the start point as its center. If all the

voxels in a layer are tightly connected to each other, they are

clustered into the same branch. On the other hand, when the

voxels are not neighborhood connected side-by-side, a ram-

ification point appears at this location. Therefore, we check

every layer in an order of the related distance value ascending

from the start point. If a layer satisfies the ramification condi-

tion mentioned above, then more than one branch is detected.

And this kind of layers is called ramification layers. Further-

more, according to the local connectivity of the voxels, the

discontinuous layer can be divided into M(M > 1, the num-

ber of post-branches) sets that are self-connected. Each set

looks like a mouth to a certain post-branch.

1949



3.3. Segmentation at ramification points

As mentioned above, a ramification layer can be divided into

M sets (generally two sets as shown in green in Fig. 2(a))

which belong to different sub-branches. Connecting the cen-

ters of the two sets in Fig. 2(a), we get a direction vector.

Along this direction, we search for all the voxels linking

the two sets with the shortest path. After cutting off these

voxels, we mark the remaining connected voxels in pre-

ramification layers as parts belonging to the branch from the

start tip feature point. Therefore, different components can

be distinguished as shown close to a real ramification point

in Fig. 2(b). The above algorithm is based on an assumption

that sub-branches are locally cylindrical.

 
(a) (b) 

Direction vector 

Starting point 

Fig. 2. Segmentation at a ramification point.

3.4. Clustering with a multi-path growing strategy

From the N tip features, we have N paths corresponding to

each sub-branch. When a voxel is reached by a certain path,

we mark the voxel as a component corresponding to this path.

The N paths growing from up to down will stop when they

meet ramification points. Then we check each ramification

position. 1) If only one mouth near the position is unmarked

(open mouth), we choose a principle path with the largest ra-

dius from the meeting paths to keep it growing to the next part

of the volume that has not been reached before. The rest paths

end the growth and will never participate in calculation in the

post-loops. 2) If more than one open mouth exist, these paths

just stop to wait for other paths passing by. The process is

repeated until the number of the growing paths down to one.

Then the remaining voxels of the volume are clustered into

the only existing path.

Finally, the decomposition of the branch volume is com-

pleted with N clusters corresponding to the tip feature points.

4. EXPERIMENTS

We test our algorithm on two branching volumes, a sunflower

and a silver willow. Table 1 provides the statistics and param-

eters during their decomposition. The second column lists

the total number of voxels. The third column presents the

value of L for controlling the size of the neighborhood rings

in feature detection. The fourth and the fifth columns show

the consensus of the number N of top features and that of

final sub-branches.

Table 1. Statistics and parameters.

Top Final
Object Voxels Rings L

Features N Sub-branches

sunflower 12,367 8 13 13

willow 49,883 10 18 18

 

 
 

 

 

(a) (b) (c) 

Fig. 3. Tip feature detection of the sunflower. (a) is the score field

visualized by a pseudo color bar on the top of (b) which represents

ascending scores from left to right. The bottom of (b) is a close-up

of the box in (a); (c) illustrates the L-ring (L=8) neighborhoods of

three tip features, respectively in magenta, blue and red color.

Some results during the tip feature detection of the sun-

flower are presented in Fig. 3. A score field (as shown in

Fig. 3(a) and (b) in case that L is 8), is built as described

in Section 2. After a local (8-ring neighborhood) suppres-

sion, 43 convex features are extracted. An illustration for the

covering areas of the 8-ring neighborhoods corresponding to

three of the features (the black spots) is presented in (c). Next,

given the number N by users, N top features will be selected

out as the tips of the branching volume, as shown in Fig. 4(a),

from which we can see that the tips are correctly indicated by

the N top features. For more complex branching volumes,

whose tip numbers are difficult to count by users, histograms

of scores can be used since the scores of the tips are definitely

larger than those of the other convex features in our experi-

ments.

Fig. 4 shows the results of volume decomposition by cor-

rectly specified tip features (Fig. 4(a)). The first column is the

sunflower and the second column is the silver willow. Differ-

ent components in each branching volume are distinguished

with different colors. The lowest row focuses on the details of

the boundaries of the sunflower and the willow respectively.

It can be seen that the volume decomposition generated by

our algorithm is reasonable and the boundaries between sub-

branches are quite accurate. In addition, we can also see that

our algorithm is competent to branching volumes with multi-

level structures.

1950



  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Fig. 4. Volumn decomposition (left column: sunflower; right col-

umn: willow). (a) and (b) show the tip features with black spots;

(c) (d) (e) and (f) show the segmentation results in different view

points; (g) and (h) are two close-ups of the sunflower and the willow

respectively.

5. CONCLUSIONS

We have presented an approach to decomposing branching

volumes based on a tip feature point detection algorithm and

a multi-path growing strategy. The algorithm has two bene-

fits. First, an evaluation criterion of convex features is pro-

posed. With the criterion, tip feature points are selected out in

a global view as seeds for decomposition. Second, the bound-

aries between segments generated by our algorithm are rea-

sonable and go along the natural seams of the models. Ad-

ditionally, since our convex feature evaluation criterion is not

limited to branching volumes, we should apply the algorithm

to common shape models in the future.
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