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ABSTRACT

The watershed segmentation is a popular tool in image pro-
cessing. Starting from an initial map, the border thinning
transformation produces a map whose minima constitute the
catchment basins of the watershed of the initial map. An inter-
esting feature of the transformed map (called border kernel) is
to convey not only the watershed partition but also numeric in-
formation relative to the initial map. In this paper, we provide
the space of all border kernels with a semi lattice and pro-
pose morphological operations (relative to this lattice) which
allow for merging border kernels and building hierarchies of
watersheds based in particular on connected filters.

Index Terms— Watershed, border kernels, lattice, hierar-
chies, data merging, mathematical morphology

1. INTRODUCTION

The watershed segmentation is a popular tool in image pro-
cessing [1–3]. It is often combined with connected filters
[4,5] which simplify the considered function (also called map
in this paper), and lead to watershed partitions with larger
classes. However, it is not only a matter of “partition grow-
ing”: a connected filter by flat zones increases the partition
by flat zonesof the considered function, but it does not neces-
sarily increase its watershed partition. Indeed, the crestlines
(thus, the watershed) of the map obtained after the filtering
step may be “shifted” compared to the ones of the original
map (see Fig. 1, whereF is the initial map,F3 a watershed
of F , F4 a filtering ofF3, andF5 a watershed ofF4).

On the other hand, there is an ambiguity in the very def-
inition of a watershed. In some cases, we want to effectively
build the crest lines (divide lines). In some other cases, we
are interested in the partition of the space into its catchment
basins and, in this case, we do not know on which side lies
the crest lines.

Recent works by J. Coustyet al. [6, 7] allow us to make
precise these notions at least in the discrete cases of finite
edge-weighted graphs. Starting from the spaceE made of
the edges of a graph rather than of its vertices, an original
idea consists of introducing the border thinnings on the edge
maps. Let us briefly recall these notions.
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Fig. 1. Watershed and connected filtering in edge-weighted
graphs. The mapF3 is a border kernel ofF and the dashed
edges a watershed ofF . The mapF4 is obtained fromF3

thanks to a connected filter (a flooding see Sec. 4). The
mapF5 is a border kernel ofF4 and the dashed edges is a
watershed ofF4. Minima are depicted in bold.

Hereafter, the workspace is a finite family of edgesE
(i.e., E is a set made of pairs of points), whose extremities
define the vertex spaceE∗. Any elementX ⊆ E induces
a family of verticesX∗ in E∗. The class made of the maps
F : E → K (whereK is any finite subset ofZ) is denoted by
F . A mapF ∈ F weights the edges ofE.

Given a mapF ∈ F , to define the border thinnings, it is
convenient to also considerF ∗ : E⋆ → K which maps each
elementx in E∗ to the minimal value of an edge inE that
containsx, i.e., F ∗(x) = min{F (u) | u ∈ E andx ∈ u}.
Let u = {x, y} ∈ E, we say that

• u is aseparating edge (forF ) if F (u) > max(F ∗(x),
F ∗(y));

• u is a border edge (forF ) if F (u) = max(F ∗(x),
F ∗(y)) andF (u) > min(F ∗(x), F ∗(y)); and that

• u is aninner edge (forF ) if F ∗(x) = F ∗(y) = F (u).

The border thinningsare the idempotent applicationšθ
acting onF and generated by compositions of the elementary



operatorθu, with u ∈ E:

(θuF )(u) = min
x∈u

{F ∗(x)} if u is a border edge forF,

(θuF )(u) = F (u) if u is not a border edge forF,

(θuF )(v) = F (v) if v 6= u.

The map̌θ(F ) obtained by a border thinning is called aborder
kernel (ofF ). These notions are illustrated in Fig 1 by the
mapsF, F1, F2 andF3. Any edge of a border kernel is either
an inner edge (in this case, it belongs to a minimum) or a
separating edge (in this case it is not in a minimum but its
extremities are both in a minimum). Therefore, any border
kernel induces a (connected) partition ofE∗. Each class of
the partition is a set of vertices induced by all edges in a single
minimum. It satisfies the strong following properties.

Theorem 1 ( [6,7]) 1 If H is a border kernel ofF then:
1/ the setS of all edges inE whose extremities are in two
distinct minima ofH is a watershed ofF and furthermore for
anyu ∈ S, H(u) = F (u); and
2/ the union of all minima ofH is a minimum spanning forest
for F relative to the minima ofF .

This theorem invites us to study the structure of the set of
all border kernels. Indeed, building a hierarchy of watersheds
means that we are able to define an order relation over this set.
Could we go further and build a lattice? It would then allows
us to construct pyramids of watersheds and to combine water-
sheds stemming from several sources. How could we further-
more describe basic operations (e.g.,dilations, closings) on
this lattice and study their properties? We begin in this paper
to investigate such structures and operators.

2. LATTICE OF BORDER KERNELS

Even if two distinct series{θup
} can lead to two distinct limit

productšθ1 andθ̌2, we always havěθ2θ̌1(F ) = θ̌1(F ), since,
by definition, there is no border edge forθ̌1(F ). Similarly,
θ̌1θ̌2(F ) = θ̌2(F ). It means that the invariance domain of
the thinningšθi is the same for all thinningšθi. It is the set
of all border kernels, or said differently the maps inF for
which there is no border edge. For the sake of simplicity, in
this paper, we will only consider the border kernels whose
minima are all of altitude 0 (the minimal value ofK) and we
will denote this set byA.

It is convenient to provide the spaceA with the order by
minima, or min order. Let F andG ∈ A. Denote byM(F )
andM(G) the sets of all edges lying in the minima ofF
andG respectively, and denote byS(F ) andS(G) the sets of
their separating edges (M(F )∪ S(F ) = E). MapF is said
smallerthan mapG for themin order, writtenF � G, if:

1/ M(F ) ⊆ M(G), or equivalentlyS(F ) ⊇ S(G)

2/ F (u) ≤ G(u) for any edgeu ∈ S(G).

1The reader can refer to [6] for the precise definitions of awatershed (cut)
and of arelative minimum spanning forest, as considered in Theorem 1.

We callhierarchy (of border kernels)any sequence
(F0, . . . , Fn) of maps inA such thatF0 � · · · � Fn.

For instance,F3 (Fig. 1) is smaller thanF7 (Fig. 2) but it
is not smaller thanF5 (Fig. 1) sinceS(F3) + S(F5).
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Fig. 2. MapF6 is obtained fromF4 by a first step of thinning
constrained by the kernelF3 andF7 is a border kernel ofF4

(obtained by a second step of thinning) constrained byF3.

Theorem 2 (Border kernel sup-semi lattice)The min or-
der generates onA a sup-semi lattice, denotedg, whose
greatest element is the constant border kernelFmax for which
the weight of each edge equals to 0 (the minimal value ofK).
For any two elementsF1 andF2 in A there exists a smallest
upper-boundF = F1 g F2, or supremumdefined by:

F (u) = max{F1(u), F2(u)} if u ∈ S(F1) ∩ S(F2)

F (u) = 0 otherwise.

Furthermore, the partition ofE∗ induced byF1 g F2 is
equal to the partitionD = D1 ∨ D2, whereD1 (resp. D2)
is the partition induced byF1 (resp.F2) and where∨ denotes
the supremum of partitions [8].
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Fig. 3. Illustration of the supremumg for themin order.

This definition of a supremum inA is illustrated Fig. 3.
On the other hand, two kernelsF1 andF2 in A do not nec-

essarily admit an infimum since the intersection of the classes
induced byF1 andF2 can lead to classes reduced to a single
vertex and there is no set of edges that induces such a class.
However, if we set, by hypothesis, a smallest border kernelF0

(the zero element of a hierarchy), then the family of all bor-
der kernels greater thanF0 is a complete lattice (for themin
order). Indeedg is still the supremum for this family and,
sinceF1 < F0, andF2 < F0, the set of the border kernels
less than bothF1 andF2 is not empty and this family admits
a greater elementsF1 f F2.

Corollary 3 LetF0 ∈ A. The familyA0 of the elements inA
greater thanF0 is a complete lattice whose supremum is the
one ofA and whose infimum is defined by:

F (u) = min{F1(u), F2(u)} if u ∈ S(F1) ∩ S(F2) or

u ∈ M(F1) ∩M(F2)

F (u) = max{F1(u), F2(u)} otherwise.



3. RAISINGS

Which operations can we build for acting on the sup-semi lat-
tice of border-kernelsA? The existence of a supremum ori-
ents us towards dilations, and, since this supremumg extends
the minima, we take as the basic operation theelementary
raisingρu defined below.

Fix an edgeu that parametrizes the operationρu and de-
fine, for anyF ∈ A, theelementary raising by edgesby:

ρuF (u) = 0 if u is adjacent to two distinct minima ofF

ρuF (u) = F (u) if u is adjacent to one minimum ofF

ρuF (v) = F (v) if v 6= u

Theorem 4 Letu ∈ E. The raisingρu acts onA and is both
a closing and a dilation with respect to themin order.

In other words,ρu satisfies the five following properties:
i) ρu(F ) ∈ A;
ii) ρu(F1 g F2) = ρu(F1) g ρu(F2);
iii) F1 � F2 impliesρu(F1) � ρu(F2);
iv) F � ρu(F ); and
v) ρuρu(F ) = ρu(F ).

Furthermore, any producťρk obtained by successive com-
positions of a series{ρuj

| j ∈ [1, k]} (i.e., ρ̌k = ρuk
. . . ρu1

)
are still dilations and closings. Thus, by iv), the successive
terms{ρ̌j} generate a hierarchy of border kernels.

4. FLOODINGS

Thefloodingoperationη̌, which we consider in this section,
is a connected operator and it constitutes an interesting way
for obtaining araising. F. Meyer and L. Najman [9] define it
as any extensive operator acting onF such that:

[(η̌F )(u) > max[(η̌F )(v), v adjacent tou] (1)

⇒ (η̌F )(u) = F (u). (2)

The previous property is rather a characteristic property
than a direct definition. In fact, we can show that any flood-
ing η̌ can be obtained as a composition product ofelementary
floodingsηu associated to any edgeu ∈ E and defined by:

(ηuF )(v) = F (v) + 1 if u andv belong to a same

minimum

(ηuF )(v) = F (v) otherwise.

The floodings (see for instanceF4 = η̌w(F3) in Fig. 1),
that often give nice results, as connected filters inF , do not
allow for producing a hierarchy of watersheds, even if we ap-
ply them to a map inF ∈ A (see the counter-exampleF5 in
Figure 1). To obtain a hierarchy from floodings, we have to
complete them with a class of constrained border thinnings
(more details will be provided in an extended version [10]).

The mapsF3, F4 (Fig. 1),F6 andF7 (Fig. 2) illustrates the
four steps of the composition of a floodinǧηw with a con-
strained border thinninǧζ, whose product is indeed a raising
and thus allows for producing a hierarchy of border kernels.

Hence, to produce a hierarchy of border kernels based on
floodings and constrained border thinnings, one only needs
a sequence of edges to parametrize successive floodings. To
this end, given an initial border kernel, one may select one
edge per minimum and order these edges thanks to attributes
relative to the minima (area, dynamics, . . . , [5,11,12]). Then,
we can construct a hierarchy of border kernels, hence a hi-
erarchy of watersheds. These watersheds can be stacked to
build a new map so that each edge is weighted by the number
of watersheds it belongs to. Such a map is called asaliency
map[13]. Note that any saliency map is a border kernel.

The saliency mapsS1 andS2 obtained from Fig. 4 thanks
to dynamics and surface attributes are depicted in Fig. 5. The
saliencyS1 correctly discriminates the significant contours
but it also strongly delineates many small highly-contrasted
regions which correspond to noise. On the other hand,S2

does not discriminates these noisy regions, but it divides
some large homogeneous zones of the image into several
parts. How could we combine the advantages of these two
hierarchies? The framework settled in this paper precisely
provides an answer: the infimum ofS1 and S2 (S1 f S2)
is depicted in Fig. 5. In the second row of Fig. 5, we also
show the segmentations into 100 regions obtained fromS1,
S2 andS1 f S2.

Fig. 4. A grayscale image.

5. CONCLUSION

In this paper, we associated a semi lattice structure to the fam-
ily of border kernels. Based on this, we showed how to merge
elements of this family and proposed a generic morphological
operation to build hierarchies of border kernels. We outlined
how to obtain interesting hierarchies based on the flooding
connected-operator and how to merge these hierarchies.

The floodings only deal with scalar functions (so that we
can define minima). However, raisings are adapted to data
fusion, and can handle simultaneously several minima since
they are dilations. Future works will focus on this last point.
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Fig. 5. Saliency maps obtained from Fig. 4 (first row) and associated segmentations into 100 regions (second row) [see text].
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