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ABSTRACT

In this work, we propose the use of sparse signal represen-
tation techniques to solve the problem of closed-loop spatial
image prediction. The reconstruction of signal in the block to
predict is based on basis functions selected with the Matching
Pursuit (MP) iterative algorithm, to best match a causal neigh-
borhood. We evaluate this new method in terms of PSNR and
bitrate in a H264/AVC encoder. Experimental results indicate
an improvement of rate-distortion performance. In this paper,
we also present results concerning the use of this technique
for intra-inter layer prediction refinement, in a scalable video
coding (SVC) like scheme.

Index Terms— intra-prediction, atomic decomposition,
extrapolation

1. INTRODUCTION

In H264/AVC, intra prediction is performed to decorrelate
neighbor blocks. There are three intra prediction types called
intra-16x16, intra-4x4 and intra-8x8 [1]. The prediction is
based on the knowledge of the pixel row and column adjacent
to the current block. Several directional modes are specified :
four directions for intra-16x16 and eight directions for intra-
4x4 and intra-8x8. The extrapolation is done by simply “prop-
agating” the pixel values along one of the four or eight direc-
tions. Additionally to these geometrical modes, the DC pre-
diction is available : this mode consists in predicting the cur-
rent block from the mean of neighboring prior encoded sam-
ples. H264/AVC intra coding is very efficient to reconstruct
uniform regions or directional structures, especially when one
direction of intra modes best fits to the contours. However it
is not possible to predict more complex textures. Alternative
intra prediction methods based on block or template matching
are suggested in [2] and [3] respectively.

To address the problem of signal prediction in highly tex-
tured areas, methods based on sparse signal approximations
are considered here. The goal of sparse approximation tech-
niques is to look for a linear expansion approximating the an-
alyzed signal in terms of functions chosen from a large and re-
dundant set (i.e. dictionary). The MP algorithm is a possible
technique to compute adaptive signal representations by iter-
ative selection of so-called atoms from the dictionary [4]. The

MP algorithm has been later improved to give at each iteration
the linear span of atoms which would give the best signal ap-
proximation in the sense of minimizing the residue of the new
approximation. This improved algorithm is known as Opti-
mized Orthogonal Matching Pursuit (OOMP) [5]. The MP al-
gorithm has been applied to low rate video coding in [6]. Mo-
tion residual images are decomposed into a weighted summa-
tion of elements from a large dictionary of 2-D Gabor struc-
tures. Used with a time-frequency dictionary of Gabor func-
tions MP provides a high-resolution adaptive parametrization
of signal’s structures. MP has also been applied to signal ex-
tension using cosines and wavelet basis functions [7]. Here,
we consider the problem of closed-loop spatial image predic-
tion or extrapolation. It can be seen as a problem of signal
extension from noisy data taken from a causal neighborhood.
The MP sparse representation algorithm is considered. We
also present a way to improve upsampled images in the con-
text of SVC coding thanks to atomic decompositions.

The remainder of the article is organized as follows. The
MP algorithm is first recalled in section 2. The adaptation of
this algorithm to the prediction problem is presented in sec-
tion 3. The application consisting in a refinement of inter-
intra layer in the SVC scheme is explained in section 4. In
section 5.1, the MP prediction is compared against AVC pre-
diction and in section 5.2, SVC refined prediction results are
presented.

2. MATCHING PURSUIT ALGORITHM (M.P.)

Let Y be a vector of dimension N and A a matrix of dimen-
sion N × M with M � N . The columns ak of A can be
seen as basis functions or atoms of a dictionary that will be
used to represent the vector Y . Note that there is an infinite
number of ways to choose the M dimensional vector X such
that Y = AX . The aim of sparse representations is to search
among all these solutions of Y = AX those that are sparse,
i.e. those for which the vector X has only a small number
of nonzero components. Indeed one quite generally does not
seek an exact reconstruction but rather seeks a sparse repre-
sentation that satisfies

‖Y − AX‖2
2 ≤ ρ



where ρ characterizes an admissible reconstruction error.
Since searching for the sparsest representation satisfying this
constraint is NP-hard and hence computationally intractable,
one seeks approximate solutions. The MP algorithm offers
a sub-optimal solution to this problem via an iterative algo-
rithm. It generates a sequence of M dimensional vectors
Xk having an increasing number of non zero components
in the following way. At the first iteration X0 = 0 and an
initial residual vector R0 = Y − AX0 = Y is computed.
At iteration k, the algorithm selects the basis function ajk

having the highest correlation with the current residual vector
Rk−1 = Y − AXk−1, that is, such that

jk = arg max
j

(
aT

j Rk−1

)2

aT
j aj

.

The weight xjk
of this new atom is then chosen so as to min-

imize the energy of the new residual vector, which becomes
thus equal to

Rk = Rk−1 −
aT

j Rk−1

aT
j aj

ajk
.

The new optimal weight is introduced into Xk−1 to yield Xk

Note that the same atom may be chosen several times by MP.
In this case, the value of the coefficient is added to the previ-
ous one. The algorithm proceeds until the stopping criterion

‖Y − AXk‖2 ≤ ρ (1)

is satisfied, where ρ is a tolerance parameter which controls
the sparseness of the representation.

3. PREDICTION BASED ON MP

Fig. 1. C is the causal area, P is the current block to be pre-
dicted and L is the whole area surrounding P

In Fig. 1, we define the block P of n×n pixels to be pre-
dicted using its causal neighborhood C of size 4n2. With the
entire region L containing 9 blocks and hence of size 3nx3n
pixels, we associate the Discrete Fourier and/or Cosine basis
functions expressed respectively as

gp,q(m, n) = e2iπ( mp
M + nq

N ) (2)

and

gp,q(m, n) = cos

(
(2m + 1)pπ

2M

)
cos

(
(2n + 1)qπ

2N

)
.

(3)
With these atoms we build the matrix A. In the experi-

ments reported in section 4, this matrix is composed of 9n2

atoms (DCT or DFT) or 18n2 atoms (DCT and DFT), how-
ever it can be extended to include other basis functions as
for instance Gabor or wavelets. We denote Y the 9n2 dimen-
sional vector formed with the pixel values of the area L and X
the vector containing the coefficients of the representation of
Y in terms of the basis functions : Y = AX . The matrix A is
modified by masking its rows corresponding to the pixels not
in the known area C. We thus obtain a compacted matrix A c

whose size is 4n2x9n2 if only the DCT basis is considered.
The corresponding components in Y are deleted similarly to
get the vector Yc of 4n2 pixels. The MP algorithm is then ap-
plied to Ac and Yc. For later use, we define similarly Ap and
Yp of size n2x9n2 and n2x1 associated with the area P to be
predicted.

Remember that the aim of MP algorithm is to get a sparse
representation of Yc. This means that as the complexity of the
representation i.e. as the number k of non zero components
in X , increases the reconstruction error

‖Yc − AcXk‖2 (4)

decreases monotonically. Here, Xk denotes the representa-
tion proposed by the MP algorithm after k steps.

But since our purpose is to get a good prediction of the
area P there is of course no reason that the better the repre-
sentation of the area C, the better the associated prediction of
the area P . We will therefore apply to MP a stopping crite-
rion that tends to fulfil this goal, i.e., that tends to minimize
the reconstruction error in P . We implement the algorithm so
that it generates a sequence of representations Xk of increas-
ing complexity and for each Xk we compute the prediction
error energy ‖Yp − ApXk‖2 and we should thus stop as soon
as this prediction error which generically starts decreasing,
increases. But since there is no reason that a more complex
representation cannot indeed yield a smaller prediction error,
we actually proceed differently and consider a two steps pro-
cedure.

First the MP algorithm are run until the pre-specified
threshold on the reconstruction error in (4) is reached and the
resulting Xk sequences are stored. The values of the thresh-
olds are fixed such that the final representation has a quite
large number of components, say K . In a second step one
then selects the optimal representation as the one that gives
the smallest error energy on the area P to be predicted:

kopt = min
k∈[1, K]

‖Yp − ApXk‖2
2 (5)

The optimal number of atoms kopt is transmitted to the



decoder side in order to be able to compute the same predic-
tion.

4. SPARSE REPRESENTATION FOR INTER-INTRA
LAYER PREDICTION

4.1. Brief introduction to SVC

Scalable Video Coding scheme has been approved as an ex-
tension of H264/AVC standard since July, 2007 [8]. This new
video codec produces bitstreams decodable at different bit-
rates. SVC provides a large degree of flexibility in terms of
scalability :
� Temporal scalability : the video can be encoded at diff-
erent temporal frequencies.
� Spatial scalability : spatial adaptability leads to multiple
resolutions. HD-videos for instance, can be decoded into SD,
CIF or QCIF format.
� Quality scalability or SNR scalability : the amount of in-
formation to reconstruct the signal can be chosen according
to the fiability of the channel.

We will focus here on improving the spatial scalability
performance.

4.2. Spatial scalability in SVC

SVC is a layered video codec which induces spatio-temporal
and quality scalability. To improve the compression effi-
ciency, the aim is to find the best prediction image to reduce
the energy of the residual error signal. SVC standard bases
its spatial prediction on dependencies between different res-
olutions. The main goal is to use as much as possible base
layer information. Each current macroblock is predicted with
up-sampled lower resolution signal. To improve coding ef-
ficiency, three upsampling process are combined : texture,
residual and motion upsampling.

The upsampling process on luminance component, tex-
ture upsampling, is performed with one dimensional 4-taps
FIR filters, horizontally and vertically, on intra predicted
blocks. The chrominance components are upsampled with
bilinear filters. The encoder also performs an intra prediction
thanks to the directional modes of H264/AVC standard. The
best predictor (e.g. lagrangian criterion) is then selected. If
the current block corresponds to an inter-coded macroblock
in the base layer, the enhancement layer macroblock is inter-
coded. The inter-layer residual prediction can also be em-
ployed for inter or intra coded blocks to improve scalable
coding.

4.3. Spatial SVC prediction with MP

The main goal of our approach is to take advantage of two pre-
dictions : intra and spatial inter-layer prediction. As showed
in section 3, the information of neighbor pixels previously

Causal area

Upsampled samples

Fig. 2. Prediction “refinement”

reconstructed is, in most cases, sufficient to recollect the un-
known current block. When the signal to predict corresponds
to new patterns or appearing edges, the reconstruction is quite
impossible. The best chosen prediction is then the mean of
the reconstructed causal area. In SVC, the current picture at
a lower resolution, the basis layer, is available. The current
block is not yet predicted so non-causal components of the up-
sampled basis layer can be used in addition to adjacent pixels
in the current picture. These pixels represent a major source
of information, especially when the signal is not predictable
with only neighbor pixels. We modify the algorithm to take
upsampled basis layer pixels into account, as depicted on Fig.
2. Pixels surrounding the current block are still considered
and we also insert pixels of the upsampled basis layer in the
input vector Y . As supplementary information about the cur-
rent block to predict is available, the algorithm is expected to
have better performances. Actually, the stop criterion (1) of
MP algorithm is much more efficient because the constraints
are not only on neighbor pixels any more. Each selected atom
is also adapted to the part of signal extracted of the upsampled
image.

5. SIMULATION RESULTS

5.1. Results about MP prediction

We consider the spatial prediction of blocks of 4 × 4, 8 × 8,
and 16 × 16 pixels (n = 4, 8 or 16). The Cosine func-
tions have been used to construct the redundant dictionary
A. The threshold is set to a value that yields a final repre-
sentation having K , a quite large number, of non zero com-
ponents. Then the vector X related to the optimal represen-
tation is selected, see (5). In all our simulations ρ is set to 1
in (1). The MP based prediction was integrated in JM 11.0
KTA 1.2 (Key Technical Area) software without any change
of the encoder syntax. The proposed prediction mode sub-
stitutes for one AVC mode for each type of prediction (intra-
4x4, 8x8 or/and 16x16). The selected AVC mode corresponds
to the less chosen mode. Results concerning the following
tests are presented : the MP based prediction subsitutes one
AVC mode when the three prediction types were combined, or
when only intra-4x4 and 8x8 were available or just intra-4x4.
Note that an additional flag was inserted to turn intra-16x16
prediction off. For instance, mode 6 (horizontal down) for



intra-8x8 and 4x4 was replaced by our sparse representation,
for the Barbara picture. Simulations were performed on a
large range of quantization levels to evaluate the Bjontegaard
(BJ) average PSNR improvement of luminance components
and bit rate savings. Table 1 presents the results for MP pre-
diction according to the three types of intra-prediction. The
higher rate savings are obtained when intra-4x4 and intra-8x8
prediction are combined. Note that the cost for encoding the
number of coefficients, is not taken into account.

4x4 4x4, 8x8 4x4, 8x8, 16x16

QP psnr rate (kb) psnr rate (kb) psnr rate (kb)

15 46.69 27 535 46.51 26 677 46.52 26 680

25 38.66 11 541 38.69 11 303 38.69 11 285

35 31.43 4 562 31.80 4 260 31.75 4 196

45 24.65 1 768 25.97 1 464 25.84 1 335

4x4 4x4, 8x8 4x4, 8x8, 16x16
BJ + 0.64 dB -7.55 % + 0.63 dB -8.25 % + 0.57 dB -7.70 %

Table 1. Bjontegaard results for MP implemented in KTA-software; QP is
the quantization parameter

5.2. Results for the SVC spatial approach

These results present a spatial inter-layer MP based predic-
tion, see 4.3. The algorithm runs both with the knowledge
of surrounding reconstructed pixels and upsampled compo-
nents from a lower resolution. To generate the quantized ba-
sis layer, we first create a lower resolution picture thanks to
a gaussian pyramid scheme. The downsampling filter used is
the following AVC filter: [26 19 5 -3 -4 0 2]. Then this image
is encoded in the KTA software and upsampled with AVC
upsampling filter [20 -5 1].We chose to set the quantization
parameter to the same value for the basis layer and the cur-
rent image. Besides, the encoder runs with the MP prediction
but the difference is that non causal area surrounding the cur-
rent block is filled with pixels of the upsampled image of the
basis layer. In order to compare our method against the usual
inter-intra layer SVC spatial prediction, we establish a refer-
ence, independently of the previous test. One substitutes the
prediction block corresponding to the upsampled image, to
the statistically less used intra AVC mode (mode 6). We also
chose to introduce the prediction from the upsampled basis
layer instead of the second statistically less chosen AVC mode
(mode 8). Fig. 3 shows the performance of our prediction put
in competition with the upsampled basis layer (UBL). The
AVC upsamlping filter well suits to recover contours between
two different textured areas. However, at a high quantization
level, the texture is lost. Therefore the MP algorithm offers
an interesting alternative to recollect the signal.

6. CONCLUSIONS

This new approach of intra prediction offers interesting per-
spectives compared to directional modes of H264/AVC. For

Fig. 3. MP+UBL performance - Associated Bjontegaard results :
+ 0.75 dB , - 9.85 %

complex textures, the MP algorithm turns out to be an in-
teresting alternative for Intra prediction and also for inter-
intra layer prediction. Concerning this second application,
the knowledge of non causal components allows the MP algo-
rithm to extrapolate local textures more precisely. Simulation
results show a bitrate improvement of 8 % in AVC and nearly
10 % in SVC. Further works will be focused on the adaptation
of the stop criterion, highly dependant on the dynamic of the
surrounding signal.
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