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ABSTRACT

Two Dimensional Hidden Markov Models (2D-HMMs) provide sub-
stantial benefits for many computer vision and image analysis ap-
plications. Many fundamental image analysis problems, including
segmentation and classification, are target applications for the 2D-
HMMs. As opposed to the i.i.d. assumption of the image observa-
tions, the naturally existing spatial correlations can be readily mod-
eled by solving the 2D-HMM decoding problem. However, compu-
tational complexity of the 2D-HMM decoding grows exponentially
with the image size and is known to be NP-hard. In this paper, we
present a Conditional Iterative Decoding (CID) algorithm for the ap-
proximate decoding of 2D-HMMs. We compare the performance
of the CID algorithm to the Turbo-HMM (T-HMM) decoding algo-
rithm and show that CID gives promising results. We demonstrate
the proposed algorithm on modeling spatial deformations ofhuman
faces in recognizing people across their different facial expressions.

Index Terms— Image analysis, Hidden Markov Models

1. INTRODUCTION

Conventional HMMs (1D-HMMs) have been successfully used in
modeling temporal dependencies of numerous Markovian processes.
Main advantage of 1D-HMM on time series data is the existence
of computationally efficient algorithms for both learning the model
parameters (training) and finding the optimal state sequence given
the data and the model (decoding).

The 2D extension of the 1D-HMM, named 2D-HMM, has been
applied in [1, 2, 3, 4] to model naturally existing spatial correlations
on images. Unfortunately, if we were to adopt the training and de-
coding algorithms from 1D-HMM and use them in the 2D-HMM
context, the computational complexity grows exponentially with the
image size and hence the problem becomes intractable. Several ap-
proximation algorithms are proposed to reduce the complexity and
make the problem tractable.

Path Constrained Variable State Viterbi (PCVSV) algorithm, [1],
reduces the computational complexity by limiting the Viterbi search
space. OnlyK state sequences with highest observation probabil-
ities are considered, without explicitly calculating their posteriors.
Since the PCVSV may converge to a local solution, one must select
K large enough to obtain a “good” solution, considering the size of
the image. On the other hand, to control the complexity,K must
be limited or the image must be analyzed in non-overlapping blocks
ignoring the correlations between pixels on the borders of blocks.
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More recently, an iterative decoding algorithm for the 2D-HMM
was presented as Turbo HMM (T-HMM), [5, 6]. Here, the authors
propose to apply 1D-decoding on rows and columns independent of
each other. Then, the posterior state probabilities of rows(columns)
are used in decoding the columns (rows) as prior probabilities. Thus,
the horizontal and vertical processes “communicate” through the
posterior state probabilities. The idea is a row- and column-wise
constrained application of belief propagation, [5, 6]. Themain as-
sumption is to represent the dependency from the neighbors as the
horizontal and vertical conditionals. Thisseparationof horizontal
and vertical dependencies is too restrictive for a generic 2D-HMM
decoding task.

In this paper, we describe a conditional iterative decoding(CID)
algorithm for decoding 2D-HMMs. In our algorithm we do not as-
sume that the transition matrix can be separated into its horizontal
and vertical components, thus the performance improves upon [7]
in the general 2D-HMM decoding problem. The proposed method
consists ofordered iterative updates on rows and columns. Instead
of decoding the rows (columns) independently, we decode therows
(columns) using the posteriors from the previous row (column) and
the posteriors of the corresponding column (row) calculated in the
previous iteration.

The rest of the paper is organized as follows. In Section 2, we
introduce the notation used throughout the paper and explain the
method for exact decoding of the 2D-HMM with its computational
complexity. Then, we describe our proposed conditional iterative de-
coding (CID) algorithm in Section 3. We finally present experimen-
tal results and give concluding remarks on Section 4 and Section 5
respectively.

2. DECODING OF THE 2D-HMM

Consider a set of nodes on a 2D lattice of sizeI × J . Each node
at (i, j) corresponds to a hidden state,qi,j of the 2D-HMM. Let
Sn denote the possible values that the stateqi,j can take, Fig.1. We
assume that the probability of the stateqi,j taking the valueSn, given
all of the previous (spatially) statesqi′,j′ where(i′, j′) ∈ {(i′, j′) :
i′ < i or j′ < j}, can be written as

P (qi,j |qi′,j′) = P (qi,j |qi−1,j , qi,j−1). (1)

Accordingly, we define the 3D transition matrixA = [ak,m,n]
asak,m,n = P (qi,j = Sn|qi−1,j = Sk, qi,j−1 = Sm). The obser-
vation atqi,j is denoted byoi,j and the probability of observingoi,j

depends only on the value of the stateqi,j . The observation distri-
butions are represented withbn(oi,j) = P (oi,j |qi,j = Sn), and the
set of all observation distributions{bn} is B.
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Fig. 1. Bayesian network of the 2D-HMM.

Fig. 2. The state sequences of the equivalent 1D-HMM

Recall that in [7], the transition matrix was decomposed into
its vertical and horizontal components, call theseAv = [av

k,n] and
Ah = [ah

m,n] with av
k,n = P (qi,1 = Sn|qi−1,1 = Sk) andah

m,n =
P (q1,j = Sn|q1,j−1 = Sm). Here, we use this decomposition for
our initial row and column computation. Accordingly, when(i =
1, j = 1), we are only left withP (q1,1 = Sn) = πn whereπ =
[πn] is the prior probabilities forq1,1.

The set of all observations is represented withO = {oi,j : i ∈
I, j ∈ J } and the set of observations fromith row andjth column
are represented withoh

i = {oi,j : j ∈ J } andov
j = {oi,j : i ∈ I}

respectively.Q, qh
i andqv

j are also defined similarly based onqi,j ’s.
By decoding, we refer to finding the best state sequenceQ∗

given the observationsO and the modelλ such that:

Q
∗ = argmax

Q

P (Q|O, λ) = argmax
Q

P (O,Q|λ). (2)

A 2D-HMM can be converted into an equivalent 1D-HMM. In
this case, each state sequence of the nodes that are enclosedwith
ellipses corresponds to a single state in the equivalent 1D-HMM,
Fig 2. Then, the decoding could be performed by the Viterbi al-
gorithm. However, the number of states needed to represent all state
sequences of the corresponding 2D-HMM would grow exponentially
(Nmin(I,J)). Therefore, the exact decoding of a 2D-HMM is an NP-
hard problem.

3. PROPOSED ALGORITHM

The algorithm consists of conditional iterative updates ofthe posteri-
ors on rows and columns. The method described in [7] assumes the
separabilityof the transition matrix into two matrices representing
row and column transitions. Thus, the vertical and horizontal depen-
dencies are calculated independently. Instead, we proposeto use the

γi−1,j (l)

γi,j(k) γi,j+1(n)

γi−1,j+1(m)

ξh
i−1,j (l,m)

ξv
i−1,j (l, k)

ξh
i,j(l,m)

ξv
i−1,j+1(m,n)

Fig. 3. Posterior probabilities of the 2D-HMM. Note that,ξ’s asso-
ciated with directed edges are joint probability distributions.

posteriors from the previous row and column to calculate thenext
row and column. In other words, posterior probabilities extracted
from each scan is conditioned on the previous scan along rowsand
columns. While we use the row and column decomposition in the
initial scan, we perform the subsequent updates over the entire 3D
transition matrix as opposed to the vertical and horizontaltransition
matrices. This enables us to pass the beliefs from each scan to the
next one through the whole transition matrix.

Let γh
i,j(n) andγv

i,j(n) be the posterior probabilities of the state
qi,j beingSn after scanningith row andjth column respectively.

γh
i,j(n) =

αh
i,j(n)βh

i,j(n)
P

n αh
i,j(n)βh

i,j(n)
(3)

ξh
i,j(k, n) represents the joint posterior probability of the states

qi,j andqi,j+1 beingSk andSn respectively after scanningith row.
Similarly,ξv

i,j(m, n) represents the posterior probability of the states
qi,j andqi+1,j beingSm andSn respectively after scanningjth col-
umn.

ξh
i,j(k, n) =

αh
i,j(k)ai,j(k, n)bh

k(oi,j+1)β
h
i,j+1(n)

P

k,n αh
i,j(k)ai,j(k, n)bh

k(oi,j+1)βh
i,j+1(n)

(4)

where

ai,j(k, n) =
1

Zk

X

l,m

ξv
i−1,j(l, k)ξh

i−1,j(l, m)ak,m,n
P

s
ξv

i−1,j(l, s)
(5)

Zk =
X

n

X

l,m

ξv
i−1,j(l, k)ξh

i−1,j(l, m)ak,m,n
P

s
ξv

i−1,j(l, s)
(6)

In the proposed algorithm, horizontal and vertical scans applied
successively and the processescommunicatethrough bothγ’s and
ξ’s. γv

i,j(n) andγh
i,j(n) are used to weight observation probabili-

ties, bn(oi,j), to havebh
n(oi,j) andbv

n(oi,j) respectively.ξv
i−1,j is

incorporated to determine the transition matrix between the states



qi,j andqi,j+1 during the horizontal scan. Similarly,ξh
i,j−1 is in-

corporated to determine the transition matrix between statesqi,j and
qi+1,j during the vertical scan.

bh
n(oi,j) = γv

i,j(n)bn(oi,j) (7)

We obtain Equation 5 by approximating joint density ofqi,j ,
qi,j+1, qi−1,j andqi−1,j+1 as

P (qi,j ,qi,j+1, qi−1,j , qi−1,j+1) ≈ P (qi−1,j , qi−1,j+1)

P (qi,j |qi−1,j)P (qi,j+1|qi,j , qi−1,j). (8)

and then approximately marginalizingP (qi,j , qi,j+1, qi−1,j , qi−1,j+1)
as

P (qi,j ,qi,j+1) ≈
X

qi−1,j

X

qi−1,j+1

P (qi−1,j , qi−1,j+1|o
h
i−1)

P (qi,j |qi−1,j , o
v
j )P (qi,j+1|qi,j , qi−1,j). (9)

In the following section we provide forward and backward up-
date rules for the horizontal scan. Similar formulation canbe derived
for vertical scan.

3.0.1. Horizontal Forward Iterations

• Initialization (j = 1):

αh
i,j(n) = πi(n)bh

n(oi,j)

• Induction (j = 2, . . . , J):

αh
i,j(n) = bh

n(oi,j)
X

k

αh
i,j−1(k)ai,j−1(k, n)

3.0.2. Horizontal Backward Iterations

• Initialization (j = J):

βh
i,j(n) = 1

• Induction (j = J − 1, . . . , 1):

βh
i,j(n) =

X

k

βh
i,j+1(k)bh

k(oi,j+1)ai,j(n, k)

4. EXPERIMENTAL RESULTS

4.1. Decoding Performance on Synthetic Data

Decoding performance is measured on synthetic data by compar-
ing log(P (Q∗|O, λ)) for PCVSV, T-HMM and CID decoding algo-
rithms. During the simulations, a 2D-HMM is constructed using a
randomly generated transition matrix where the number of states is
selected asN = 2. A 2D sequence of statesQ with I = J = 100 is
generated based on the transition matrix and the observations are ob-
tained by adding white Gaussian noise with zero mean andσ = 0.5.

oi,j =



N (0, σ) qi,j = S1

1 + N (0, σ) qi,j = S2
(10)

As suggested in [7] horizontal and vertical transition matrices
(av

k,n, ah
m,n) are obtained by

av
k,n =

1

N

X

m

ak,m,n, ah
m,n =

1

N

X

k

ak,m,n. (11)

The average log-likelihoodslog(P (Q∗|O, λ))/(IJ) with re-
spect to the iterations are illustrated in Fig. 4. Since PCVSV is not an
iterative algorithm, the average log-likelihoods are illustrated with
horizontal lines with variousK ’s.

Fig. 4 shows that, CID outperforms T-HMM and PCVSV with a
reasonableK values. It is worth to mention that the log-likelihood
will increase by increasingK and will reach to the exact decoding
performance whenK = Nmin(I,J). However, in this case, the com-
plexity of the PCVSV decoding will be too high to be practical. To
give better idea about the complexity, forI = J = 100, N = 2 and
K = 128, running time of T-HMM and CID were 27 times and 23
times faster than PCVSV respectively.
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Fig. 4. Average Log-Likelihoods for CID, T-HMM and PCVSV

T-HMM assumes that the transition matrix is separable i.e.,
ak,m,n can be written as multiplication ofah

m,n andav
k,n, Eq. 11.

Here, we define the measure of separabilityD asD =
P

k,m Dk,m

where

Dk,m =
X

n

ak,m,n log(
Zk,mak,m,n

av
k,nah

m,n

). (12)

whereZk,m is a normalization factor such that

Zk,m =
X

n

av
k,nah

m,n. (13)

We run the same simulation illustrated in Fig. 4 with randomly gen-
erated transition matrices500 times. For each simulation, we note
theseparabilitymeasure together with the difference of the average
log-likelihoods of CID and T-HMM decoding algorithms.

Fig. 5 illustrates the scatter plot of the average log-likelihood dif-
ferences as a function ofD. Each point indicates the difference of the
average log-likelihood of CID minus that of T-HMM. Fig. 5 shows
that the log-likelihood difference, hence the performancegain, im-
proves as theD increases. In other words, the performance improve-
ment of the CID over T-HMM becomes more and more significant
when theseparabilityassumption of the transition matrix does not
hold. In addition, if the transition matrix isseparable(D ≅ 0), CID
does not degrade the performance over T-HMM, e.g. there are no
negative values of the difference.

4.2. Decoding Performance on Deformable Face Recognition

The decoding performances of CID and T-HMM algorithms are also
tested on real images on face recognition problem. We have used the
Yale Face database [8], which contains8 different facial expressions
(no-glasses, surprised, glasses, sad, happy, sleepy, normal, wink)
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and3 different illuminations (center-light, right-light, left-light) of
15 subjects. The images are cropped around the face using the co-
ordinates of eyes and tip of nose. For each subjects ∈ {1, . . . , 15}
a single image withnormal facial expressionBs is used as the tem-
plate image. Given a query imageA, distance between the query and
the template image is calculated based on the optimal warping of the
template image onto the query image.

Q
∗
s = argmax

Q

P (Q|O(A,Bs), λ) (14)

In the deformable face recognition scenario, each state is as-
sociated with a translation vector and transition matrix defines the
correlation of the neighboring translation vectors. Gaborwavelet
features with4 scales and6 orientations are used to extract24 di-
mensional feature vector for each pixel. The emission probabilities
are extracted based on the distance of the feature vectors from image
A andBs considering the translation vectors.

Figure 6 illustrates the optimal warping of two template im-
ages withnormal condition to the query image withsleepycondi-
tion. First row mesh images illustrates the optimally warped regular
meshes superimposed on the template images. Second row images
are the resulting warped image. It is also obvious from the figure
that the cost of warping the right template image to the queryimage
is larger than that of left template image. Most of the deformations
on the mesh of the left template image tries toclosethe eyes of the
template image of the subject which can also be seen on the warped
image.

Once the optimal warpingQ∗
s is found for each subjects, recog-

nition is done based on the following:

s∗ = argmax
s∈{1,...,15}

P (Q∗
s |O(A,Bs), λ). (15)

The overall recognition performances on150 query images are
presented on Table 1.

T-HMM CID
%ER 4.0 3.3

Table 1. Error Rates on Yale Face Database

5. CONCLUDING REMARKS

In this paper we present the CID algorithm for 2D-HMM decod-
ing. In the synthetic decoding problem, we showed that performance
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Fig. 6. Sample Face Deformation Output

improvement of CID over T-HMM increases when theseparability
measure of the transition matrix decreases and CID never degrades
the performance over T-HMM even with smallD. CID also outper-
forms the PCVSV algorithm with reasonableK values. However,
as an expected result, increasingK will always improve the perfor-
mance of the PCVSV algorithm and as we reachK = Nmin(I,J),
it will be identical to the exact decoding while making the problem
intractable even for small(I, J, N).
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