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ABSTRACT More recently, an iterative decoding algorithm for the 2V
was presented as Turbo HMM (T-HMM), [5, 6]. Here, the authors
Two Dimensional Hidden Markov Models (2D-HMMs) provide sub propose to apply 1D-decoding on rows and columns indepeérden
stantial benefits for many computer vision and image ar&lgisb  each other. Then, the posterior state probabilities of (@e&Imns)
plications. Many fundamental image analysis problemsiuing  are used in decoding the columns (rows) as prior probagsilifThus,
segmentation and classification, are target applicationshie 2D-  the horizontal and vertical processes “communicate” thhothe
HMMs. As opposed to the i.i.d. assumption of the image ol#serv posterior state probabilities. The idea is a row- and cohwise
tionS, the natura“y existing Spatial COI’I’e|ati0nS can m[ly mOd- Constrained app“cation Of behef propagation, [51 6] Thain as-
eled by solving the 2D-HMM decoding problem. However, COMpu symption is to represent the dependency from the neighisotisea
tational complexity of the 2D-HMM decoding grows exponetii  horizontal and vertical conditionals. Thigparationof horizontal
with the image size and is known to be NP-hard. In this paper, W and vertical dependencies is too restrictive for a genedid3MM
present a Conditional Iterative Decoding (CID) algorittonthe ap-  decoding task.
proximate decoding of 2D-HMMs. We compare the performance |, this paper, we describe a conditional iterative decod@i®)
of the CID algorithm to the Turbo-HMM (T-HMM) decoding algo-  5jgorithm for decoding 2D-HMMs. In our algorithm we do not as
rithm and show that CID gives promising results. We demastr g,me that the transition matrix can be separated into itgdval
the proposed algorithm on modeling spatial deformationsuohan 514 vertical components, thus the performance improves {ifjo
faces in recognizing people across their different facigressions. i, the general 2D-HMM decoding problem. The proposed method
Index Terms— Image analysis, Hidden Markov Models consists oforderediterative updates on rows and columns. Instead
of decoding the rows (columns) independently, we decodeaiive
(columns) using the posteriors from the previous row (caluand
1. INTRODUCTION the posteriors of the corresponding column (row) calcdlatethe
previous iteration.
Conventional HMMs (1D-HMMs) have been successfully used in The rest of the paper is organized as follows. In Section 2, we
modeling temporal dependencies of numerous Markoviaress®s.  jntroduce the notation used throughout the paper and expie
Main advantage of 1D-HMM on time series data is the existencgnethod for exact decoding of the 2D-HMM with its computatibn
of computationally efficient algorithms for both learningetmodel complexity. Then, we describe our proposed conditionattee de-
parameters (training) and finding the optimal state sequi@i@n  coding (CID) algorithm in Section 3. We finally present expemn-

the data and the model (decoding). tal results and give concluding remarks on Section 4 andebt
The 2D extension of the 1D-HMM, named 2D-HMM, has beenrespectively.

applied in [1, 2, 3, 4] to model naturally existing spatiafredations

on images. Unfortunately, if we were to adopt the training da-

coding algorithms from 1D-HMM and use them in the 2D-HMM 2. DECODING OF THE 2D-HMM

context, the computational complexity grows exponentiafith the

image size and hence the problem becomes intractable_ﬁaver Consider a set of nodes on a 2D lattice of size J. Each node

proximation algorithms are proposed to reduce the comipiexid ~ at (4, ) corresponds to a hidden statg,; of the 2D-HMM. Let

make the problem tractable. Sy denote the possible values that the statecan take, Fig.1. We
Path Constrained Variable State Viterbi (PCVSV) algoritfthy ~ @ssume that the probability of the staig taking the values,, given

reduces the computational complexity by limiting the Miliesearch ?/” of the previous (spatially) states ;; where(i’, j') € {(i',j") :

space. OnlyK state sequences with highest observation probabil? <?0rj < j}, can be written as

ities are considered, without explicitly calculating thposteriors.

Since the PCVSV may converge to a local solution, one mustsel P(gijlar ;) = P(aijlai-1,qi.5-1)- 1)
K large enough to obtain a “good” solution, considering thre sif

the image. On the other hand, to control the complexifymust Accordingly, we define the 3D transition matt& = [ak,m,n]
be limited or the image must be analyzed in non-overlapplagks ~ 8S@k,m.n = P(gij = Snl¢i-1,; = Sk, qij—1 = Sm). The obser-
ignoring the correlations between pixels on the borderdarfids. vation atg;,; is denoted by ; and the probability of observing;

depends only on the value of the statg. The observation distri-

This study was funded by Center for Bioimage Informaticsarrgtants ~ butions are represented with(o;,;) = P(0i,5|¢:,; = S»), and the
NSF-ITR 0331697. set of all observation distributiord®,, } is B.




Fig. 2. The state sequences of the equivalent 1D-HMM

Recall that in [7], the transition matrix was decomposea int
its vertical and horizontal components, call thesé = [a} ] and
AM = [am,n] with ak,n - P(qul - Sn|q7~*171 = Sk) andam,n =
P(q1,j = Snlq1,;—1 = Sm). Here, we use this decomposition for
our initial row and column computation. Accordingly, whéh=
1,7 = 1), we are only left withP(g:,1 = S,) = m, wherer =
[7,] is the prior probabilities fog: ;.

The set of all observations is represented vixh= {0; ; : i €
7,j € J} and the set of observations froifi row and;™ column
are represented with! = {0; ; : j € J} ando? = {o;,; : i € T}
respectivelyQ, q” andq; are also defined similarly based @p);’s.

By decoding, we refer to finding the best state sequeRte
given the observation® and the modeh such that:

@

Q" = argmax P(Q|O, \) = argmax P(O, Q|\).
Q Q

A 2D-HMM can be converted into an equivalent 1D-HMM. In
this case, each state sequence of the nodes that are enalitsed
ellipses corresponds to a single state in the equivalenH/DA,

Fig 2. Then, the decoding could be performed by the Viterbi al

gorithm. However, the number of states needed to repreesthiz
sequences of the corresponding 2D-HMM would grow expoaéwnti

(N™in(L )y Therefore, the exact decoding of a 2D-HMM is an NP-

hard problem.

3. PROPOSED ALGORITHM

The algorithm consists of conditional iterative updatethefposteri-

&y (1m)

Fig. 3. Posterior probabilities of the 2D-HMM. Note thats asso-
ciated with directed edges are joint probability distribos.

posteriors from the previous row and column to calculatertet
row and column. In other words, posterior probabilitiesrasted
from each scan is conditioned on the previous scan along aods
columns. While we use the row and column decomposition in the
initial scan, we perform the subsequent updates over thiree3id
transition matrix as opposed to the vertical and horizamégadsition
matrices. This enables us to pass the beliefs from each edhe t
next one through the whole transition matrix.

Let ’yﬁj(n) andv; ;(n) be the posterior probabilities of the state
gi,; being S, after scanning' row and;™ column respectively.

aiy(n)Bi;(n)

2 e (n)B(n)

g{fj(k:, n) represents the joint posterior probability of the states
qi,; andg; ;41 being Sy andsS,, respectively after scanning' row.
Similarly, &7 ; (m, n) represents the posterior probability of the states
gi,; andg;4+1,; beingS,, andS,, respectively after scanning' col-
umn.

Vi(n) = 3)

ol (k)ai ; (k, n)bi (0i j41)Bij41(n)

ihj k:7 = 4
& (k) > 5 (K)ai j (k, n)bl(0i 5 +1) B0 ;41 (n) (4)
where
gz 1] l k gz 1]( )ak,m,n
as3 (k) Z SN ©
Zzgz 1] l kéz 1](l m)akmn (6)

22 &0,;(s)

In the proposed algorithm, horizontal and vertical scandieg

n l,m

ors on rows and columns. The method described in [7] assumees tSUCCGSSIVGW and the processmsnmunicatehrough bothy’s and
separabilityof the transition matrix into two matrices representing £'s. 7i;(n) and~/;(n) are used to weight observation probabili-

row and column transitions. Thus, the vertical and horiabtépen-
dencies are calculated independently. Instead, we prdpase the

ties, by (0:,5), to haveb! (o; ;) andby (o; ;) respectively.&?, ; is
incorporated to determine the transition matrix betweendtates



gi,; and ¢; j+1 during the horizontal scan. Similarlg{fj,1 is in-
corporated to determine the transition matrix betweerstat; and
gi+1,; during the vertical scan.

b (06,5) = 755 (n)bn (045) @)

We obtain Equation 5 by approximating joint density @f;,
@i,j+1, Gi—1,5 @ndgi—1,j+1 as

P(¢i,,%i,i+15 Gi—1,5, Gi—1,5+1) = P(gi-1,5, ¢i—1,j+1)

P(i,51gi-1,5) P(qi,j+11q:,5, Gi—1,5)- (8)

and then approximately marginalizid®q; ;, ¢i,j+1, ¢i—1,5, Gi—1,j+1)

as
~ z z P(qi-1,5,qi—1,j+1]00—1)

Qi—1,5 9i—1,5+1

P(qi,j1qi-1,5,05)P(qi,j+11qi,5, qi—1,5)-

P(qi,5,9i,5+1)

9)

In the following section we provide forward and backward up-
date rules for the horizontal scan. Similar formulation bamlerived
for vertical scan.

3.0.1. Horizontal Forward lterations

e Initialization (j = 1):

h
i j(n)

J):

h
) = by (04,5) E oz” 1 (

i(n)by (0i5)

e Induction j =2,...,

k)aij—1(k,n)

ozZ J
3.0.2. Horizontal Backward lterations
e Initialization (j = J):

Bij(n) =1
J—1,...,1):

Zﬂz J+1

e Induction (j =

k)b (01 54+1)ai i (n, k)

/BLJ

4. EXPERIMENTAL RESULTS

4.1. Decoding Performance on Synthetic Data

Decoding performance is measured on synthetic data by aempa
inglog(P(Q*|0, A)) for PCVSYV, T-HMM and CID decoding algo-
rithms. During the simulations, a 2D-HMM is constructedngsa
randomly generated transition matrix where the numberaiéstis
selected a®v = 2. A 2D sequence of stat&@ with 7 = J = 100 is
generated based on the transition matrix and the obsemgadie ob-
tained by adding white Gaussian noise with zero mearsaad0.5.

o :{ N(0,0)

1+ N(0,0)
As suggested in [7] horizontal and vertical transition ricas
(a} ., al, ,,) are obtained by

E Ak, m,n, amn:

m

¢ =51

% = 52 (10)

§ Ak, m,n-

(11)

The average log-likelihoodkg(P(Q*|O,\))/(IJ) with re-
spect to the iterations are illustrated in Fig. 4. Since P30t an
iterative algorithm, the average log-likelihoods aresthated with
horizontal lines with varioug(’s.

Fig. 4 shows that, CID outperforms T-HMM and PCVSV with a
reasonabldy values. It is worth to mention that the log-likelihood
will increase by increasingd and will reach to the exact decoding
performance whedx = N™*(/) However, in this case, the com-
plexity of the PCVSYV decoding will be too high to be practicab
give better idea about the complexity, fbe= J = 100, N = 2 and
K = 128, running time of T-HMM and CID were 27 times and 23
times faster than PCVSV respectively.

K=2048
K=1024
K=512
K=256
K=128
K=64

K=32

Avg. Log. Lik.

K=16

L L L
6 8 10
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Fig. 4. Average Log-Likelihoods for CID, T-HMM and PCVSV

T-HMM assumes that the transition matrix is separable i.e.,
ak,m,n Can be written as multiplication ofm » anday, ,, Eq. 11.
Here, we define the measure of separabiitasD = > k.m Dkm

where
Zk,mak,m,n

h
k,ndm,n

Dy = Zak’mynlog( (12)

n

whereZ, ., is a normalization factor such that
7 h
Zk,m = Z az,nam,n-
n

We run the same simulation illustrated in Fig. 4 with randpggn-
erated transition matricé®0 times. For each simulation, we note
the separabilitymeasure together with the difference of the average
log-likelihoods of CID and T-HMM decoding algorithms.

Fig. 5illustrates the scatter plot of the average log-ii@bd dif-
ferences as a function @1. Each point indicates the difference of the
average log-likelihood of CID minus that of T-HMM. Fig. 5 she
that the log-likelihood difference, hence the performaga, im-
proves as th® increases. In other words, the performance improve-
ment of the CID over T-HMM becomes more and more significant
when theseparabilityassumption of the transition matrix does not
hold. In addition, if the transition matrix separablgD = 0), CID
does not degrade the performance over T-HMM, e.g. there@re n
negative values of the difference.

).

(13)

4.2. Decoding Performance on Deformable Face Recognition

The decoding performances of CID and T-HMM algorithms ase al
tested on real images on face recognition problem. We hactthe
Yale Face database [8], which contaihdifferent facial expressions
(no-glasses, surprised, glasses, sad, happy, sleepyahosink)
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Fig. 5. Differences of Average Log-Likelihoods w.x

and3 different illuminations (center-light, right-light, lefight) of
15 subjects. The images are cropped around the face using the co

ordinates of eyes and tip of nose. For each subjeet{1,...,15}
a single image wittnormalfacial expressiorB; is used as the tem- :
plate image. Given a query imagk distance between the query and Template Images
the template image is calculated based on the optimal wgndithe
template image onto the query image. Fig. 6. Sample Face Deformation Output
Q; = argmax P(Q|O4,p,), \) (14)
Q improvement of CID over T-HMM increases when theparability

In the deformable face recognition scenario, each stats-is ameasure of the transition matrix decreases and CID neveadeg
sociated with a translation vector and transition matrifirdes the ~ the performance over T-HMM even with smal CID also outper-
correlation of the neighboring translation vectors. Gawawelet forms the PCVSV algorithm with reasonabf¢ values. However,
features withd scales and orientations are used to extrabt di-  as an expected result, increasifigwill always improve the perfor-
mensional feature vector for each pixel. The emission fiitiies ~ Mance of the PCVSV algorithm and as we redch= N™"("7),
are extracted based on the distance of the feature vectonsritage it will be identical to the exact decoding while making thelpiem

A and B, considering the translation vectors. intractable even for sma(l/, J, V).
Figure 6 illustrates the optimal warping of two template im-
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