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ABSTRACT 
We propose a new complexity modeling framework for 
multimedia tasks. We characterize the traffic with five parameters 
that together we designate as a task’s complexity specification
(CSPEC). We extend this model to a scalable CSPEC, which can 
be used to characterize the many complexity- and quality-scalable 
operating points available to multimedia tasks. The proposed 
scalable CSPEC can be used by multimedia applications to match 
their resource requirements to available system resources. 

Index Terms— Video decoding complexity, complexity 
scalability

1. INTRODUCTION 
A majority of state-of-the-art video coders can create bit-streams 
that can be decoded at different quality- and complexity-levels. 
This is achieved by dividing the bit-stream into layers, partitions, 
video packets etc. that can be decoded successively in order to 
gradually improve the video quality at an increased computational 
cost. Fine complexity scalability can be achieved by 
simultaneously adjusting the number of decoded layers, , and the 
average extracted bit-rate [2]. 
The majority of work done on multimedia complexity analysis or 
prediction does not consider that multimedia applications can 
cooperate with the system they run on. Specifically, much of this 
work does not provide models that are appropriate for admission 
control and resource allocation scenarios. In [4], analytic models 
are developed based on coder-specific assumptions that cannot be 
easily generalized to other coding schemes or other 
coding/decoding configurations. Therefore, such models cannot 
capture the complexity-scalability available to video decoding 
applications. In [1], a statistical regression approach is used to 
model video decoding complexity. Complexity prediction is done 
using histograms of previous measurements and a linear prediction 
model. This technique can be used to meet an arbitrary percentage 
of deadlines (e.g. 95%), however, worst-case CPU allocations 
must be made in order to meet 100% of deadlines. 
In this paper, we propose a complexity model that captures the 
complexity scalability of video applications and enables 100% of 
deadlines to be met without using worst-cast resource allocations. 

2. ADAPTIVE WORKLOAD MODELING 
2.1. Properties of Video Decoding Workloads 
In this paper, we focus on MCTF-based temporal scalability. 
However, our approach is general and not limited by the particular 
layering/partitioning choice or video coder. Table 1 shows the 
decoding deadlines for the frames of an MCTF structure with 

 temporal layers (i.e. it is partitioned into 
temporal layers). In Table 1,  denotes the display deadline of the 
pair of original frames  and the deadline of each 

subsequent pair is  seconds after the previous pair’s deadline. 
The value of  depends on the encoded frame-rate and, for our 
experiments, is set as s to correspond to a 30Hz 
encoded frame-rate. We note that a 5/3 Haar filter temporal 
decomposition is used in Table 1, but similar results can be 
obtained using other decompositions [3]. 
To illustrate several key properties of video decoding workload 
traffic, which make it challenging to characterize and model, 
example traffic for a variety of scenarios is shown in Fig. 1. We 
will describe each plot in Fig. 1 individually. 
Workload depends on the sequence characteristics: To illustrate 
the impact of varying video source characteristics, , on the 
decoding workload across a GOP, Fig. 1(a-b) show the upper- and 
lower-bounds on the workload traffic for GOPs four and five 
(frames 65-96) of the Silent and Stefan sequences, respectively 
(CIF resolution, 30Hz encoded frame-rate, and rate 

 Kb/s). Comparing Fig. 1(b) and Fig. 1(a), it is 
clear that decoding Stefan is significantly more computationally 
complex than decoding Silent for most choices of . This 
observation is congruent with the intuition that Stefan’s intense 
motion characteristics should generally yield heavier peak and 
mean computational workloads at the CPU. Hence, the complexity 
depends on a particular video source’s characteristics, . 
Workload is highly time-varying: From Table 1 it is clear that the 
number of frames that must be decoded at each deadline is not 
distributed evenly over the duration of the GOP. For example, 
when decoding all the layers, only 3 frames require decoding or 
reconstruction during the time-interval 
while 10 frames are decoded or reconstructed during the time-
interval . The time-varying workload curves in Fig. 

Table 1. Display deadlines for decoding frames partitioned into 
 temporal layers. Decoding  layers requires decoding the 

frames in columns  as well as the frames in column . 
Number of Decoded Layers ( ) Display 

Deadline 1 2 3 4 
, , , , ,

- , ,
- , ,
- , ,
- - - ,
- , , ,
- - - ,
- - ,
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1(a-b) reflect this unbalanced workload distribution within a GOP. 
Fig. 1(c), on the other hand, shows how decoding workloads are 
also typically time-varying across several GOPs. This is the 
consequence of changes in motion and texture characteristics over 
the duration of the video sequence. 
Workload is rate dependent: Fig. 1(a-b) also illustrates how rate 
affects the decoding complexity. Notice that adjusting the rate can 
have a significant impact on the complexity, particularly at the first 
decoding deadline in a GOP where the base-layer frames (i.e. 

 using the MCTF coder, or an I frame in H.264) 
containing most of the texture information are decoded. For 
example, in Fig. 1(a), at the circled complexity measurements at 

s (i.e. the first decoding deadline for GOP 4), 
adjusting the rate  significantly impacts the 
decoding complexity. Hence, adjusting the rate  can increase a 
task’s chances for admission into a system with limited resources. 
In other cases, when minimal residual texture information is 
decoded, rate-independent motion compensation operations 
dominate the complexity (see the circled complexity measurement 
at s in Fig. 1(b)). 
Decoding different layers leads to complexity scalability: Fig. 1(a-
b) also illustrate that significantly reduced peak and mean 
workloads can be achieved by decoding less layers. The wide 
range of complexity scalability enabled by decoding various layers 
is important in an admission control scenario where a task may not 
be allocated any processor resources if it cannot adapt its workload 
to the resources available to it. 
Based on the above observations pertaining to the time-varying 
decoding workloads, a workload traffic model that captures all of 
these characteristics and can provide latency guarantees through an 
admission control process is highly desirable. We present such a 
model in the next subsection. Note that while the above 
observations were made for one particular coder, similar 
observations can be made for other coders such as H.264/AVC and 
MPEG-4 using the same methodology. 

2.2. Characterizing Video Decoding Workload Traffic 
In order to capture a video decoding task’s time-varying and bursty 
resource requirements, we model the decoding workload traffic 
with a twin leaky bucket. We assume that the task decodes 
layers at rate . The important model parameters are the Peak 
Workload  (cycles/second), Mean Workload
(cycles/second), Maximum Burst Size  (cycles), and Delay

 (seconds). is set based on the application 
requirements or user preferences. The remaining parameters can be 
determined using offline modeling, training, or profiling, followed 
by real-time classification [2] [4]. 
We would like to develop a model that considers both the Peak 
Workload and the Mean Workload for two reasons: considering 
just the Peak Workload  results in over conservative worst-
case complexity estimates that inefficiently use the CPU 
bandwidth; conversely, considering only the Mean Workload 

 under allocates CPU bandwidth during time intervals 
where the workload exceeds the Mean Workload and therefore 
results in missed decoding deadlines and, consequently, frame 
drops. By enforcing the (small) Delay  on all display 
deadlines (i.e. the display deadlines in Table 1 become 

 for ) the bursty workload can 
be smoothed to reduce the peak computational complexity. 
This delay parameter was first introduced in [5] in order to reduce 
the peak computational capacity required by a device to decode a 
particular bit-stream. In this paper, we expand on the concept by 
also exploiting complexity-scalability which, given a fixed Delay 
parameter, allows a task to adapt its complexity to match available 
resources. 
Based on a twin leaky bucket analysis, the CPU Bandwidth 
Demand for decoding   layers at rate  with Delay  is: 

. (1) 

Together, the token bucket parameters and the CPU Bandwidth 
Demand determine the task’s Complexity Specification (CSPEC) 
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Fig. 1. (a,b) Typical complexity profile for decoding  temporal layers (with  temporal level MCTF structure) of one 
GOP of the Silent and Stefan sequences, respectively. Includes upper- and lower-bounds on the decoding complexity when decoding 

 layers with rate  Kb/s. Notice that the y-axis scales are different for each sequence. (c) Typical complexity 
profile over many GOPs when decoding  layers of the Silent sequence.
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denoted as the set , 
where the Max Burst Size  is omitted because it can be 
determined as  

 cycles. (2) 
Intuitively,  can be expressed as in (2) because it 

corresponds to the maximum processor workload during any 
second time interval. We note that the CPU Bandwidth Demand 

 in (1), corresponding to the smoothed workload, is the 
parameter that we believe should be used for resource allocation 
and admission control because it resolves the aforementioned 
issues with the Peak and Mean Workloads. Fig. 2 shows how the 
various CSPEC parameters are determined using the cumulative 
workload traffic arrival curve . Note that in Fig. 2, , , 
and  are the slopes of the respective lines. 
Importantly, this CSPEC definition can be used to characterize the 
decoding workloads of other coders. The CSPEC can also be 
adapted to characterize video encoding workloads. 

2.3. The Scalable Complexity Specification 
Depending on the sequence characteristics, , task  might 
deploy different decoding strategies in order to adapt its CSPEC 
and negotiate with the Resource Manager for its fair share of 
resources. Note that each video coder and task can implement its 
own decoding strategy set. Here, for illustration purposes, we 
define ,  as a complexity 
strategy vector in the feasible set of complexity strategies for task 

, where � �  and 
�  and �

denote the decoding strategy spaces enabling spatio-temporal 
decoding tradeoffs and bit-rate adaptations (corresponding to the 
SNR scalability), respectively. We denote the cardinalities of the 
strategy spaces as �  and 

� . Note that the feasible complexity strategies 
and decoding strategy spaces for the -th task depend on its video 
source characteristics, , for the reasons described in Section 2.1. 
For notational simplicity, we do not explicitly indicate this 
dependence. By selecting the complexity strategy vector 

, a task operates at one of the 
�  feasible complexity levels, 

which define its Scalable CSPEC. Formally, we define the -th 
task’s Scalable CSPEC as the set, 

 (3) 

where , rewritten using the complexity strategy notation, is 
determined by (1) using the corresponding Peak Workload 

, Mean Workload , Max Burst Size 

determined by (2), and the Delay , which relaxes the 
decoding/display deadlines. 

3. EVALUATION 
3.1. Scalable CSPEC statistics 
Fig. 3 illustrates example Scalable CSPEC statistics for the first 
256 frames of the Silent sequence (CIF resolution, 30 Hz encoded 
frame-rate). The Delay  is set to . The example 
operating points, , from which the statistics are 
gathered, are defined by the  complexity strategies 

 with the vector components 
�  and  Kb/s, 

with  and   

The solid bars in Fig. 3 are the averaged value of the 
corresponding parameter (i.e. , , or ) over 13 
measurements taken for bit-rates between 200Kb/s and 1.5Mb/s. 
The error bars show the maximum and minimum value of the 
corresponding parameter for the 13 measurements. 
The solid bars in Fig. 3 illustrate that, by selecting � , 
a task’s CPU Bandwidth Demand  can be scaled to below 
half of its maximum. Additionally, observing the error bars, it is 
clear that adjusting ��  yields finer complexity 
scalability by approximately 10-40% of the maximum CPU 
Bandwidth Demand for a fixed value of . Clearly, the feasible 
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set of complexity strategies defines a wide range of complexity 
scalability. Therefore, complexity strategies are essential when 
tasks negotiate for limited system resources with the resource 
manager.  
The Delay  significantly reduces the processing rate 
required to meet all decoding and display deadlines. Specifically, 
compared to the Peak CPU Bandwidth  that is required to 
meet all task deadlines when , the CPU Bandwidth 
Demand  for  is lower by ~30% on average. 
In scenarios where a device’s limited processing capacity preclude 
the admission of one or more tasks with high peak requirements, 
even small delays can improve the number of admitted tasks. We 
note that the Delay  can be increased further to achieve 
greater reduction in the CPU Bandwidth Demand, however, this 
requires larger memory buffers [5]. 

3.2. Benefits of Using the CPU Bandwidth Demand 
In this subsection, we evaluate the use of the CSPEC’s CPU 
bandwidth demand parameter , used for admission control, 
against an existing solution in the literature [1] and also against the 
mean CPU bandwidth requirement .
Let  be the first deadline of the -th GOP, then we say that all 
frames with their deadlines at , for  (as 
in Table 1) belong to the -th deadline/priority class. Smaller 
values of  correspond to frames of higher priority because future 
frames depend on them. In an H.264/AVC based coder, for 
example, I frames can be classified as having , P frames 

, and B frames . 
Table 2 illustrates the distribution of missed deadlines in a priority 
class for two cases: first, the CPU bandwidth assigned is 
statistically determined in order to meet 95% of the video decoding 
task’s deadlines [1]; second, the CPU bandwidth is assigned as the 
task’s Mean Bandwidth requirement . In the latter case, many 
deadlines are missed across several classes because the mean CPU 
bandwidth does not guarantee that the instantaneous deadline-to-
deadline bandwidth requirements are satisfied. The former case has 
many less missed deadlines, however, they all occur in the highest 
priority class which can adversely affect the quality of subsequent 
frames. The bottom half of Table 2 shows the quality impact of the 

Mean Bandwidth (labeled “Mean”), 95% deadline (labeled 
“95%”), and CPU Bandwidth Demand (labeled “Proposed”) based 
resource allocations. Based on the Peak-Signal-to-Noise Ratios in 
dB (PSNR) in Table 2, it is clear that allocating resources to meet 
an arbitrary percent (e.g. 95%) of a task’s deadlines significantly 
impacts the PSNR. 
In the top half of Table 2 we do not include the case when the CPU 
bandwidth demand  is assigned to a task, and each priority 
class’s deadlines are increased to , because no 
deadlines are missed. 

4. CONCLUSION 
In this paper, we have introduced the scalable CSPEC, which 
characterizes multiple complexity-levels available to a video 
decoding application. We have shown that, by introducing a small 
latency when processing highly time-varying multimedia 
workloads, we are able to meet all application deadlines. 
Additionally, we are able to smooth the bursty workload, thereby 
reducing the CPU bandwidth required to decode a sequence. 
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Table 2. Deadline miss percentage for different deadline/priority classes for two bandwidth allocation strategies based on either meeting 
95% of all deadlines or only providing the mean CPU bandwidth required by a task. Comparison of PSNRs for different resource 
allocations. 

Deadline / Priority Class Deadline Miss % 
Sequence 

Allocated CPU 
Bandwidth 0 1 2 3 4 5 6 7 

95% 43.75 0 0 0 0 0 0 0 
Silent

Mean 100.0 68.75 62.50 50.00 0 81.25 0 0 
95% 43.75 0 0 0 0 0 0 0 

Stefan
Mean 100.0 87.50 75.00 0 0 87.50 0 0 

Sequence PSNR (Proposed) PSNR (95%) PSNR (Mean) 

Silent 38.25 dB 37.14 dB 31.37 dB 

Stefan 35.03 dB 32.06 dB 26.46 dB 
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