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ABSTRACT

In this paper, a new unsupervised hierarchical approach to textured
color images segmentation is proposed. To this end, we have desi-
gned a two-step procedure based on a grey-scale Markovian over-
segmentation step, followed by a Markovian graph-based cluste-
ring algorithm, using a decreasing merging threshold schedule,
which aims at progressively merging neighboring regions with si-
milar textural features. This Hierarchical segmentation method,
using two levels of representation, has been successfully applied
on the Berkeley Segmentation Dataset and Benchmark (BSDB[1]).
The experiments reported in this paper demonstrate that the pro-
posed method is efficient in terms of visual evaluation and quan-
titative performance measures and performs well compared to the
best existing state-of-the-art segmentation methods recently pro-
posed in the literature.

Key words : Hierarchical Markovian segmentation, textural
segmentation, graph partitioning, regions merging, image Berke-
ley database.

1. INTRODUCTION

Image segmentation is an essential tool for most image ana-
lysis tasks which consists of achieving a compact region-based
description of the image scene by decomposing it into spatially
coherent regions with similar attributes. This low-level vision task
is often the preliminary (and also crucial) step for many image un-
derstanding algorithms and computer vision applications.

To date, a number of segmentation techniques have been pro-
posed and studied in the last decades to solve the difficult pro-
blem of textured color image segmentation. Amongst them, we
can cite clustering algorithms [2], graph-based segmentation me-
thods (exploiting the connectivity information between neighbo-
ring pixels or regions) [3, 4, 5], hierarchical graph-based methods
[6, 7], Mean-Shift-based techniques [8, 9] or finally split and merge
and growing techniques (sometimes directly expressed by a global
energy function to be optimized [10]).

The segmentation algorithm presented in this paper is both
part of the hierarchical graph-based segmentation and the region-
based split and merge procedures. More precisely, our technique
relies on a two-step hierarchical procedure whose first step is a
classical unsupervised Markovian over-segmentation into K classes
of the input image [11]1. This step allows us to produce a segmen-
tation map with spatially coherent regions in the grey level sense
(also called superpixels [12]). In this first low-level representation
level, the input image is modeled by a MRF prior model defined by

a graph whose pixels correspond to nodes connected to their 4 nea-
rest neighbors. For the degradation (or likelihood) model, we have
taken a Gaussian law to describe the luminance distribution within
each class and parameters of this distribution are estimated thanks
to an iterative method called iterative conditional estimation (ICE)
[13]. In a second step, this over-segmented region map is conver-
ted into a regions adjacency graph (RAG) which is then exploited
by a recent graph-based Markov Clustering[14] (MCL) approach
which works by simulating random walks in graphs. In order to
render this final graph partitioning procedure unsupervised and to
achieve a more reliable and accurate segmentation result, we have
proposed herein a decreasing merging threshold schedule in order
to progressively merge neighboring regions with similar color tex-
tural features.

The remainder of this paper is organized as follows. Section
2 describes the regions adjacency graph used by the MCL algo-
rithm and built from the Markovian over-segmented region map.
Section 3 presents our iterative graph-partitioning method based
on the MCL approach. Finally, Section 4 presents a set of expe-
rimental results on the Berkeley image database and comparisons
with existing segmentation techniques.

2. REGION ADJACENCY GRAPH

To decrease the computational load, a preliminary merging
step is achieved on the over-segmented region map that simply
consists of fusing each small region (i.e., whose size is below
Γ = 30 pixels) with the region sharing its longest boundary. Af-
ter this pre-processing step, the over-segmented region map (R)
is then modeled by a classical regions adjacency graph (RAG) in
which each node represents a region to be clustered and each edge
(linking two nodes of this graph) is endowed with a weight repre-
senting a color textural similarity measure between two adjacent
regions.

More precisely, our textural similarity measure exploits the set
of color values contained within each squared 5 × 5 window Fp

and Gq , centered respectively at location p and q (belonging to two
adjacent regions and located within a search window of fixed size
15×15 centered at p). In our application, this color-based textural
measure is defined by

d(Fp, Gq) = exp
“
− 1

2σ2

NcX
i=1

(μpi − μqi)
2
”

(1)

1C++ Code of this unsupervised Markovian segmentation is publicly
available at the following http address
www.iro.umontreal.ca/∼mignotte/ResearchMaterial/
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where the first summation is done for each channel of respectively
the RGB, HSV, LUV, YIQ, XYZ and LAB color spaces (each
color channel has been normalized between 0 and 255) and μpi

designates the mean of the color values (located in the window
Fp) of the ith considered channel. σ acts as a scale parameter that
allows to differentiate more or less these different distances.

In order to define a reliable textural similarity estimation bet-
ween each adjacent region that takes into account the textural di-
versity (existing in each adjacent textured region), we have decided
to take the average of the 8 smallest textural similarity distances
defined in Eq. (1). This technique also allows us to be, first, largely
insensitive to the parameter σ and second, it provides a more ro-
bust estimation of the textural dissimilarity measure between two
adjacent regions, compared to a classical mean value of similarity
measures. In this way, each edge, linking two adjacent regions ri

and rj , is endowed with the following weight

Dr(ri, rj) =
1

|ri|
X
p∈ri

X
q∈rj

Ψ
ˆ
d(Fp, Gq)

˜
(2)

Where |.| is the region cardinal, Ψ[.] is the operator computing the
average of the 8 smallest distances.

By associating a weight with each edge, this constitutes a di-
rected RAG. In order to convert it in a undirected graph, each edge
is finally associated with max{Dr(ri, rj),Dr(rj , ri)}.

3. SEGMENTATION BY GRAPH PARTITIONING

Once the undirected RAG is built, the rationale of all graph
partitioning methods is based on the observation that if a group a
nodes (i.e., a set of regions in a RAG) is strongly connected in-
side and has few connections to the outside, a cluster is found. A
cluster is thus defined to be a strongly connected sub-graph. Ac-
cording our criterion based on a textural similarity measure, this
sub-graph also defines one of the spatially coherent region (in a
textural sense) to be detected in the input image.

3.1. Markov Clustering (MCL)

The MCL [14] is a recent, fast, and efficient clustering algo-
rithm for graphs, based on simulation of random walks in graphs.
This algorithm is based on the property that in a graph, a random
walk inside a dense cluster (i.e., a strongly connected cluster) will
visit many of the nodes before leaving the cluster. Another inter-
pretation consists of simulating flow in the RAG and promoting
flow where connections are strong and demoting it where they are
weak, so that flow between clusters dies out but not within clusters.
Rather than simulating random walks with a (computationally de-
manding) stochastic approach, the MCL algorithm simulates flow
using (alternating) two simple algebraic operations on the simi-
larity matrix (i.e., the adjacency matrix associated to the RAG).
The first operation is expansion, which coincides with normal ma-
trix multiplication. Expansion models the spreading out of flow.
The second is inflation, which is mathematically speaking, a Ha-
damard power followed by a diagonal scaling. Inflation models the
contraction of flow ; it becomes thicker in regions of higher current
and thinner in regions of lower current. The MCL process causes
flow to spread out within natural clusters and evaporate between
different clusters. The process converges towards a partition of the
graph, with a set of high-flow regions (the clusters) separated by
boundaries with no flow. The value of the inflation parameter r

controls cluster granularity and thus influences the number of clus-
ters and it acts as a classical regularization parameter.

Starting from G = (V, E, our RAG (V is the vertex set, E is
the edge set) and its associated similarity matrix A = A(G), the
detail of the MCL clustering algorithm is given in Algorithm 1.

� Algorithm : Markov Clustering (MCL)

G = (V, E) Region Adjacency Graph

A Similarity Matrix

e Expansion Parameter

r Inflation Parameter

while A is not fix-point do
A ⇐ Ae

� EXPANSION

forall u ∈ V do
forall v ∈ V do

Auv ⇐ Ar
uv � INFLATION

forall v ∈ V do
Auv ⇐ AuvP

w∈V Auw

C⇐ graph induced by non-zero entries of A

Algorithm 1: MCL clustering algorithm

3.2. Iterative Graph-Partitioning Approach

In order to render this MCL-based region merging process un-
supervised and to achieve a more reliable and accurate segmenta-
tion result, we have used a decreasing merging threshold schedule
in order to progressively merge neighboring regions with similar
color textural features. This is achieved by iterating the MCL al-
gorithm with a slowly decreasing inflation parameter r according
to the following decreasing schedule, herein (empirically) defined
as a negative exponential function of the number of iterations n

rn = max
n

r0 exp
`−n

τ

´
, 1

o
(3)

where r0 = 1.4 in our tests and τ = 25 is a constant in our appli-
cation. This iterative merging process allows efficiently significant
regions to progressively emerge of the background. This strategy
seems especially well suited when foreground objects, to be seg-
mented, are blended with the background due to camouflage (see
Fig. 1).

It remains that the segmentation is inherently an ill-posed pro-
blem which exhibits multiple solutions for different possible va-
lues of the number of textural classes not a priori known. This is
due to the fact that each human or each segmentation algorithm
chooses to segment an image at different levels of detail. To render
this problem well-posed with a unique solution, some constraints
on the segmentation process are necessary, favoring over segmen-
tation or, on the contrary, merging regions. In our iterative graph-
partitioning approach, this constraint is specified by a lower bound
on the final number of regions (noted Nr) to be detected. The Mer-
ging MCL process stops when the lower bound of regions is rea-
ched. In our application, our algorithm depends on two conditions
for ending its execution, the first is the number of detected regions
in the final segmentation, the second is the maximum number of
iterations allowed (noted Nmax).
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FIG. 1 – Iterative MCL segmentation. >From top to bottom and
left to right, (a) original image, (b) initial oversegmentation, (c)
MCL (1 iteration), (d) MCL (2 iterations).

4. EXPERIMENTAL RESULTS

4.1. Set Up
In all the experiments, we have thus considered the following

internal parameters for our segmentation model. For the Marko-
vian over-segmentation, we have considered K = 6 classes. For
the iterative MCL clustering, the size of the window F or G and
the window search are respectively set to 5× 5 and 15× 15. The
initial inflation parameter is set to r0 = 1.4 and its decreasing
schedule (see Eq. (3)) uses τ = 25. The expansion parameter is
set to e = 2 (as [14]). Finally, our a priori lower bound on the
final number of regions is Nr = 75 and the maximum number of
iterations allowed is Nmax = 4.

4.2. Performance Measures

We have replicated the scenario used in the evaluation of state-
of-the-art segmentation methods described in [15]2. In these expe-
riments, we have tested our segmentation algorithm (called HMC
for Hierarchical Markov Clustering) on the Berkeley segmenta-
tion database [1] consisting of 300 natural color images of size
481×321. For each color image, a set of benchmark segmentation
results, provided by human observers (between 4 and 7), is avai-
lable and will be used to quantify the reliability of the proposed
segmentation algorithm. As proposed in [15], we have compared
our segmentation algorithm against five unsupervised algorithms,
available publicly. For each of these algorithms, their internal para-
meters are set to their optimal values (see [15, 16, 17]) and/or cor-
responds to the internal values suggested by the authors. These al-
gorithms are namely the Mean-Shift [8] (with hs = 13, hr = 19),
Ncuts [4] (with a number of segments K = 20, agreeing with the
average number of regions found in the segmentation maps given
by the human observers [15]), and FH [18] (with a smoothing pa-
rameter σ = 0.5, a threshold value k = 500 and a minimal region
size equals to 200 pixels) and the CTM (Compression-based Tex-
ture Merging) algorithm proposed in [15, 19] (with η = 0.1 and
η = 0.2) and finally the FCR [17] fusion method.

As in [15], all color images are normalized to have the longest
side equals to 240 pixels. The comparison is based on the follo-
wing performance measures, namely the PRI measure (higher pro-
bability is better) along with three metrics VoI, GCE, BDE (lower
distance is better). The qualitative meaning of these three metrics
are outlined below.

2We have used the Matlab code, proposed by Allen Y. Yang in order to
estimate the quantitative performance measures presented in this Section.
This code is kindly available on-line at address
http ://www.eecs.berkeley.edu/∼yang/software/ lossy_segmentation/.

PERFORMANCE MEASURES
Algorithms PRI VoI GCE BDE

Human 0.8754 1.1040 0.0797 4.9940

HMC[1] 0.7835 3.9900 0.2900 9.5700
HMC[2] 0.7816 3.8700 0.3000 8.9300
FCR 0.7882 2.3035 0.2114 8.9951
CTMη=0.1 0.7561 2.4640 0.1767 9.4211
CTMη=0.2 0.7617 2.0236 0.1877 9.8962
Mean-Shift 0.7550 2.4770 0.2598 9.7001
NCuts 0.7229 2.9329 0.2182 9.6038
FH 0.7841 2.6647 0.1895 9.9497

TAB. 1 – Performances measures (higher is better for PRI and lo-
wer is better for VoI, GCE and BDE). HMC[2] is the proposed
algorithm with the internal parameters given in section 4.1. For
HMC[1], we used the same parameters, except we don’t take into
account the stopping criterion using a lower bound of the maximal
number of regions.

1. The Probabilistic Rand index PRI [20] counts the fraction
of pairs of pixels whose labellings are consistent between
the computed segmentation and the ground truth. The re-
sult is averaged across all human segmentations of a given
image.

2. The Variation of Information (VoI) metric [21] is based on
relationship between a point and its cluster. It uses mutual
information metric and entropy to approximate the distance
between two clusterings across the lattice of possible clus-
terings.

3. The Global Consistency measure (GCE) [1] measures the
extent to which one segmentation map can be viewed as a
refinement of another segmentation. For a perfect match (in
this metric sense) every region in one of the segmentation
must be identical to, or a refinement (i.e., a subset) of a
region in the other segmentation. Segmentation which are
related in this manner are considered to be consistent, since
they could represent the same natural image segmented at
different levels of detail (as the segmented images produced
by several human observers for which a finer level of detail
will merge in such a way that they yield the larger regions
proposed by a different observer at a coarser level).

4. The Boundary Displacement Error (BDE) [18] measures
the average displacement error of one boundary pixels and
the closest boundary pixels in the other segmentation.

4.3. Comparison With State-Of-The-Art Methods

Table 1 shows that the proposed algorithm gives competitive
results in terms of PRI measure. This measure is highly correla-
ted with human hand-segmentations and has a perceptual meaning
since this performance measure is also a rate of good classifica-
tion (a score equals to PRI= 0.78 simply means that on average
78% of pairs of pixels labels are correctly classified in the seg-
mentation results). Table 1 also shows that the algorithm proposed
in this paper is much more efficient than the Mean-Shift, NCut
and FH in terms of BDE. Finally, it gives a good compromise bet-
ween all these complementary performance measures, except in
terms of VoI measure (certainly because our method rather favors
oversegmentations). As also shown in [17], the use of many color
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spaces (in our color-based textural measure) allows to noticeably
improve the performance measures of our algorithm. Indeed, expe-
riments with the same strategy but with only one color space (na-
mely RGB) gives the following score : [PRI=0.7419, VoI=3.8315,
GCE=0.3073, BDE=10.4570]. Our algorithm takes, on average,
about 80 seconds for an AMD thurion 64 bits 1.5 GHz and non-
optimized code running on Linux.

5. CONCLUSION

In this paper, we have presented a hierarchical Markovian seg-
mentation method of textured color images. This technique is ba-
sed on a grey-scale Markovian over-segmentation step, followed
by an iterative Markovian graph-based clustering algorithm that
uses a decreasing regularization parameter which aims at progres-
sively merging neighboring regions with similar textural features.
This method remains simple to implement and efficient for the dif-
ficult problem of textured color image segmentation. Besides, let
us finally add that our procedure is also perfectible (e.g., by using
an initial color over-segmentation or a more elaborate color-based
textural measure) and also well suited for other kind of images
since prior information on the size, the number, or the shape of the
regions can be easily integrated in this segmentation procedure.
The proposed method can be limited by the presence of camou-
flage in the image.

FIG. 2 – HMC segmentation results on some images of the Berke-
ley database.
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