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ABSTRACT

A recent dynamic increase in demand for wireless multime-
dia services has greatly accelerated the research on cross layer
optimization techniques for transmitting multimedia data over
wireless channel. In this paper, we explore a novel theoreti-
cal approach for joint optimization between the rate distortion
(RD) of H.264/AVC video and the link-capacity of MIMO
parallel subchannels. We obtain the optimal power level of
subchannels through an optimization problem to minimize to-
tal visual distortion. In the simulation results, compared to
the water filling (WF) method, the proposed scheme provides
better results in aspects of visual quality in the face of sum
rate loss.

1. INTRODUCTION

In the fourth-generation (4G) mobile communication networks,
wireless multimedia applications (visual communications, mul-
timedia streaming, interactive applications, etc.) require high
data-rate, high-quality and real-time multimedia services any-
time and anywhere over a broad bandwidth with sufficient ro-
bustness in spite of the inherently limited and unpredictable
wireless channel. Due to the increasing demand for wire-
less multimedia data, cross layer optimization techniques for
transmitting multimedia data over wireless channel are re-
cently emerged as one of the most prominent research topics.
Recent attempts allocate the radio resources of orthogonal fre-
quency division multiplexing (OFDM) or multi-input multi-
output (MIMO) systems for H.264/AVC video transmission
[1]-[3].

In [2], a power allocation scheme is proposed for trans-
mitting H.264/AVC video data over a MIMO-OFDM wireless
channel, and in [3], an unequal error protection (UEP) algo-
rithm is proposed to transmit scalable video over MIMO sys-
tem, in a practical manner. However very few attempts have
been made at theoretical analysis to obtain the performance
upper or lower bound for the multimedia data transmission.
In [1], we obtained a closed-form optimal loading ratio over
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an OFDMA cellular network by means of the theoretical up-
per bound of a quality criterion. In this paper, we analyze the
theoretical lower bound of visual distortion using a novel ap-
proach when allocating the power for H.264/AVC video trans-
mission. The slice containing visually important data (i.e. re-
gion of interest, ROI) is transmitted by the principal eigen
subchannel of the MIMO system, and the slices containing
visually less important data are transmitted by the remaining
subchannels. An optimal power level of each subchannel is
determined by joint optimization between the rate distortion
(RD) of slices in video frames and the link-capacity of corre-
sponding MIMO subchannels to minimize the visual distor-
tion. Finally, a closed-form solution of optimal power alloca-
tion is obtained by the Lagrangian method. Compared to the
water filling (WF) algorithm, which is the optimal power allo-
cation method in that it maximizes sum rate [6], the proposed
scheme provides better results in aspects of visual quality in
the face of sum rate loss.

2. VISUAL WEIGHT MODEL

Suppose that two users perform a visual communication over
a capacity limited mobile channel. Generally, it is common
knowledge that the face object or region is the most important
visual information needed to be delivered. Thus, each frame
can be spatially divided into the ROI region and the remain-
ing non-ROI regions according to visual attention. The ROI
region is determined by using an eye tracker or a face detec-
tion algorithm and so on. In the H.264/AVC, the ROI coding
can be implemented by using the error resilience tool flexible
macro-block ordering (FMO), which allows to group the ROI
while only adding accepable overhead [4]. The H.264/AVC
specifies 7 different types of FMO, labeled Type 0 to Type 6.
Among them, Type 2 divides one or more rectangular slice
groups and a background as shown in Fig. 1 (a).

The relative difference in visual importance among slice
groups can be obtained by the human visual system (HVS)[5].
When the visual stimulus is perceived by the HVS, the light
coming from objects is projected on the retina. A point on
the retina that the light is directly focused on is called fovea,
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Fig. 1. (a) Slice grouping by Type 2 of FMO, (b) The local
bandwidth

which lies on the visual axis. On the image, the point mapped
into the fovea is called “foveation point”, which is generally
in ROI. The retina possesses a nonuniform spatial distribu-
tion (resolution) of photoreceptor cells. It decreases exponen-
tially with distance away from the fovea. Thus, the image is
sampled non-uniformly by the cones. By the shannon’s sam-
pling theorem, the perceptible frequency bandwidth becomes
locally different according to the sampling density, which is
called the local bandwidth. Thus, the image information near
the foveation points should be more importantly treated than
further ones.

In [5], the fast foveated algorithm calculates the local band-
widths, shown in Fig.1 (b), by an exponential model of the
spatial sampling grid of the fovea in the human retina, in con-
junction with an assumed viewing distance, and by choosing
the model parameters such that the human eye would be un-
able to discriminate the foveated image from the original, as-
suming a given fixation point in the image being observed.
Using the model, the local bandwidths, f,,, of the nt" macro
block are obtained. Finally, normalizing the sum of the local
bandwidths over each slice group, the visual weight of the /*"
slice, wy, is calculated like below,
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where S; denotes the macro-block (MB) set contained in the
Ith slice group, A is a set of whole MBs in a frame.
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3. MIMO CHANNEL AND SINGULAR VALUE
DECOMPOSITION

We consider a communication system with a transmitter (with
My transmit antennas) and a receiver (with Mp receive an-
tennas). The My x 1 received signal vector, y, is given by

y=Hx-+n 2)

where n denotes the M x 1 independent and identically dis-
tributed (i.i.d.) additive white Guassian noise (AWGN) vector
with covariance matrix N,Iz,. The signal vector to be sent
from the transmitter is expressed as x = [sy, ..., sa7,.| T, with

E[xx"] = diag(p1,p2,...,prm,) subject to EfwT p; = Pr,
where Pr is the total transmit power. The channel response
between the transmitter and the receiver is represented by an
Mpr x Mt MIMO channel matrix as

hit - himg
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where A, (1 <m < Mg, 1 < n < Mrp)is modeled as a
complex Gaussian variable with zero-mean and unit variance
representing the channel response between the nt" transmit
antenna and the m*" receive antenna.

However the tangled MIMO channel is inadequate for the
UEP scheme of weighted FMO slices. Incidentally, the eigen-
beamforming matrix decomposes the original Mg x M chan-
nel matrix into B = rank(H) decoupled eigen subchannels
[6], so that information carried along each eigen subchannel
will not interfere with each other at the receiver. Transmit-
ting the bit-stream of each FMO slice over the subchannel
and controlling the power of each signal according to the vi-
sual weight and the subchannel gain, the UEP scheme can be
naturally accomplished.

The optimal transmit beamforming scheme is a singular
value decomposition (SVD) algorithm[6], where the transmit
beamforming matrix is obtained through SVD of the channel
matrix H which is H = UAVH | where U and V are uni-
tary matrix and A=diag(\1,...,Ap) is the B x B diagonal
matrix containing singular values. With the full channel state
information at the transmitter, the signal vector x of dimen-
sion My x 1is multiplied by the right singular matrix V prior
to transmission. At the receiver, the received signal vector y
is multiplied by the matrix U!. Then, the MIMO channels
can be decomposed into B parallel spatial subchannels (eigen
channels) given by y = UPHVx + U¥n = Ax +n, where
y and n denote the transformed received signal vector and
noise vector, respectively. Equivalently, decomposed spatial
subchannles can be rewritten as

i=1,...,B (4)

haepain

Ui = NiSi + g,

The capacity of the MIMO channel is the sum of the indi-
vidual parallel subchannel capacities and is given by

¥ A
C = ) log, 1+ﬁ0pi . (5)
=1

The optimal power allocation for maximizing the data through
put, well-known WF algorithm [6] can be applied to each spa-
tial subchannels.

4. VISUAL DISTORTION OPTIMIZATION

Using the visual weight in (1) and the RD model of Gaussian
source in [7], the visual distortion-rate model for the I*" slice
can be defined as
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where M, and 612 are the number of macro-block and the av-
erage standard deviation for the I*” slice, respectively.

Note that the total number of FMO slice groups is equal
to B = rank(H). Assuming that a source codec compresses
the video source not to exceed link capacity, the rate of the I*"
slice group becomes as below,

2

A
Ry = 4 -log, (1 + Nlopl> : ™

where ¢ (0 < ¢ < 1) is used to make the ideal link capacity
become the achievable throughput without bit error.

The power control among B grouped FMO slices can be
formulated as the following constrained optimization prob-
lem:

B

B
(4)  min D{"(Ry) st Y Ri< Rpas
Y=

If we consider the visual distortion rate model and the link ca-
pacity formula for the MIMO system simultaneously, in other
words substituting (7) to (6), our optimization problem can be
transformed as follows:

)72
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st Y p<Pr,p >0, Vi
=1

The solution of problem (B) is an optimal power set, {p1, p2,
- ,pp} for each spatial subchannel. Because problem (B)
is a convex optimization, we can apply to the (Karush Kuhn
Tucker) KKT condition with respect to pj to obtain an opti-
mal power set which is a globally optimum solution.
Using a Lagrangian relaxation,

—2¢ B
A
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=1

where v is a nonnegative Lagrangian multiplier. Taking the
derivatives with respect to p and v, respectively, gives the
KKT conditions as follows:
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From (8), if power p; is allocated to the [*" data stream (that

is, p; > 0), then the complementary slackness condition is

satisfied. As a result, the optimal values of p; is given by
1
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To obtain multiplier v, use (9), when v > 0,

1
EB: [ EB: NO l<2wlleO%A% _1> - 1]
p, = ~ e —
P A N,

=1

B " B
N, (leMﬂ/Jalz)\Q) WL N,
— E V2oL — E 2
=1 12 No =1 )\12

= Pr 11

Therefore, the multiplier v can be calculated as below,
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5. SIMULATION RESULTS

In the simulation, the CIF “Foreman” sequence with 15 fps
is compressed using the H.264/AVC codec. The first frame
is coded as I-frame and the remaining frames are coded as P-
frame. The FMO of Type 2 [4] is utilized to packetize MBs
into two slice groups (B = 2) according to the visual impor-
tance. Since we assumed that the foveation point is the center
of the face, each frame can be divided into the ROI (I = 1)
and non-ROI slices (I = 2). Also, we use a 2x2 MIMO system
under an independent Rayleigh fading channel. The elements
of the MIMO channel matrix H are obtained from Clarke /
Jakes’s model [8]. It is assumed that the channel is known
perfectly at both the transmitter and the receiver.

To show that the proposed algorithm is excellent for min-
imizing visual distortion, we compare the proposed algorithm
with the WF algorithm which is the optimal power alloca-
tion algorithm in the SVD-based MIMO spatial subchannel
transmission [6]. Fig. 2 and Fig. 3 present the ergodic capac-
ity! and the visual distortion according to the different SNRs,
respectively. The proposed scheme is worse than the WF al-
gorithm in terms of capacity. However, if we use the conven-
tional WF algorithm, the visual importance of each slice can-
not be considered and FMO is not applicable. It means that
the WF algorithm can maximize system capacity, but it cannot
minimize the distortion in aspect of visual quality. Especially,
it is interesting that our proposed scheme can directly mini-
mize the total visual distortion and can also improve overall
video quality in the face of some system capacity loss at the
low SNR region. This result is well represented in Fig. 3.

IThe term “capacity” means the tightest upper bound on the amount of
information that can be achieved with arbitrarily very small error probability.
In this simulation, we don’t consider the bit error but the quantization error.
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Fig. 2. Ergodic capacity as a function of SNR.
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Fig. 3. Visual distortion as a function of SNR.

As aforementioned, despite the proposed scheme has loss in
the capacity compared with the WF, the visual distortion of
image can be minimized at low SNR conditions.

Fig. 4 shows the simulation results when the visual weights
of ROI and non-ROI slice are 0.7 and 0.3 respectively. Fig.
4 (a) and (b) are the reconstructed image when the WF algo-
rithm and the proposed scheme are used, respectively. In the
WEF algorithm, Fig. 4 (a), the ROI slice has severe distortion
since every slice has the same visual importance. Even if the
capacity is a bit larger, the overall visual quality is not better
due to the distortion of ROI slice. Whereas, in the proposed
scheme, the ROl slice is relatively well protected. At the same
time, the overall quality is also fairly good due to properly
allocated resources. So, it is easily observed that the visual
quality of the proposed scheme, Fig.4 (b), is better than Fig.4
(a). In the objective quality assessment, SSIM and PSNR, the
proposed scheme has also the best results.

6. CONCLUSION

This paper describes the optimal power level of each subchan-
nel was determined by joint optimization between the rate
distortion (RD) of the slices in the video frames and the link-
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{a) Water-filling (ne FMO)
S5IM - 0.81418
PSNR : 30.948732

{b) Propesed
SSIM - 0.911743
PSNR : 36.093849

Fig. 4. Reconstructed Image of (a) WF (wihout FMO), (b)
Proposed Scheme (with FMO). SNR=2dB.

capacity of the corresponding MIMO spatial subchannels to
minimize the visual distortion. In the simulation, the pro-
posed optimization technique markedly improved the video
quality, particularly at the low SNR channel condition. Thus,
we can conclude that if the source and channel are jointly
considered for optimization, the QoS level of visual commu-
nications will be improved.
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