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Abstract
Complex diffusion was introduced in image processing literature as a means to achieve simultaneous
denoising and enhancement of scalar valued images. In this paper, we present a novel geometric
framework for achieving complex diffusion on color images expressed as image graphs. In this
framework, we develop a new variational formulation for achieving complex diffusion. This
formulation involves a modified harmonic map functional and is quite distinct from the Polyakov
action described in earlier work by Sochen et al. Our formulation provides a framework for
simultaneous (feature preserving) denoising and enhancement. We present results of comparison
between the complex diffusion, and Beltrami flow all in the image graph framework.
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1. INTRODUCTION
Image denoising is a quintessential component of most image analysis tasks and there are
numerous methods reported in literature for achieving this goal. In the past few decades,
methods based on partial differential equations (PDEs) have become very popular and there
has been a flurry of activity that has matured the field significantly. Some of the PDE-based
methods can be derived from minimizations principles while others are not. The general
mathematical form of a feature preserving anisotropic diffusion is given by,

Where, u(x, y; t)|t=0 = I(x, y) is the function being smoothed and initialized to the input image
to be smoothed. The choice of g(|▽u|) in the above leads to various types of diffusion flows.

Alternatively, one may represent the image as a graph by embedding it as a 2D surface Σ with
local coordinates (σ1, σ2), in R3, the embedding map X is given by, X : (σ1, σ2) → (x, y, I(x,
y)). This provides a geometric interpretation to the PDEs as those that modify some geometric
property such as area of the 2D manifold representing the image surface. In the case of vector-
valued images, the embedding map X is given by, X : (σ1, σ2) → (x, y, Ii(x, y)), where, Ii(x, y)
are the channels of the given vector valued image. This graph representation also provides a
geometric way to handle the interaction between the components (channels) of the vector-
valued images. Kimmel et al., [1] pioneered the use of this image graph representation to
develop algorithms to achieve image smoothing in scalar and vector-valued image data sets.
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They also introduced the Polyakov actoin [4] to derive various flows such as the Beltrami,
mean curvature, and the Perona-Malik flows. One of the benefits of this approach is that the
channels in multi-channel (vector-valued) images such as color images can be correlated in a
geometrical way. However, diffusing the RGB channels in a color image and retaining their
correlation is not simple. If we perform isotropic or anisotropic diffusion independently on
each channel, then the coupling between the channels is ignored.

Alternatively, one may simply extend the traditional diffusion to diffusion in the complex-
domain: One can generalize the diffusion equation to the domain of complex-valued functions.
In [5], Gilboa et al. pioneered a general approach to isotropic and anisotropic complex (valued)
diffusion. In complex diffusion, the imaginary part behaves as a smoothed second derivative
so that we can have image smoothing and edge information simultaneously. The authors of
[5] have shown that using the imaginary part for g(|▽u|) in the anisotropic diffusion equation
above gives more improved denoising results than the Perona-Malik flow. However, they did
not apply the complex diffusion model to vector-valued images. In this paper, we present a
novel model of simultaneous smoothing and enhancement by mapping the real and complex
channels to Cn, introducing an image-surface metric and constructing an action functional on
the image manifold. In our approach, the correlation between the color channels is introduced
via the metric on the image (graph) manifold. Due to lack of space, we present one experimental
result on color image denoising and edge enhancement case, depicting the performance of our
model in comparison with the Beltrami flow [1–3] for color image denoising. Rest of this paper
is organized as follows: In section 2, we present a novel metric for the image manifold and a
novel norm functional whose minimization yields the desired flow equation. In section 3, we
present results of application of our model to color images along with comparisons. Finally,
section 4 contains the conclusions.

2. ACTION FORMALISM FOR COMPLEX DIFFUSION
2.1. The image metric

The general idea of complex diffusion has been investigated in [5]. However, their primary
focus was on gray level images. There was no generalization to vector-valued data sets. Since
we deal with processing multi channel images here, one of key problems here is how to process
the data and capture the correlation between the channels. In [2], the authors have introduced
a norm functional called the Polyakov action and an embedding map X : Σ → Rn, where Σ is
a 2-D manifold, in order to capture the interaction between the multiple channels, and minimize
the norm functional to obtain specific flows that smooth images in different ways. In this paper,
we suggest an alternative to the Polyakov action, where the image manifold, Σ is mapped to
n-dimesional complex manifold by Z : Σ → Cn. Denoting the local coordinates on the 2-D
manifold Σ by (σ1, σ2), the map Z is given by [Z1(σ1, σ2), Z2(σ1, σ2), …, Zn(σ1, σ2)], where
all the Zs are complex. For example, a color (RGB) image can be mapped by Z as follows:

(1)

where  is the complex conjugate of z, Il is a complex-valued channel,

 is the complex conjugate of Zi and the index l runs over R,G, and
B.

Let M, the space-feature manifold denote the embedding manifold of the image graph. Let us
now consider Z : Σ → M and let gμν be the metric on the image manifold Σ, and hij be the
metric on M. Here, hij is defined such that hijdZidZj gives a length element on M, and this metric
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makes the manifold M equivalent to the Riemannian manifold with (n×2)+2 dimensions, where
n and the additional 2 represent the number of channels and the local coordinates respectively.
If, for example, a gray level image is considered, then, hij is represented by,

(2)

so that the length element is  Then, the image metric,
gμν is given explicitly as follow:

(3)

where, . The image metric for the n-channel case is given explicitly by,

(4)

where x and y are local coordinates. We are now ready present the formulation of the norm
functional i.e., the action formalism.

2.2. The action formalism
Images in computer vision are usually real-valued, therefore, it is natural to pose them as a
real-valued graph with a real-valued metric. However, in this paper we seek an action (a norm
functional) appropriate for complex-valued functions and need an action distinct from the
Polyakov action presented in [2]. We would like the gradient descent (flow) equation of the
new action to equal the complex diffusion introduced in [5] under a special geometry and depict
edge-preserving flows on a graph. We propose the following specific action for the n-channel
images satisfying the above conditions:

(5)

(6)

Here, x and y are local coordinates, and g is the determinant of the image metric gμν. In Eq.
(6), generally, we can assign different phase θl to each channel.

We can derive the gradient descent of Eq. (5) by evaluating the Euler-Lagrange equation with
respect to the embedding. For this, we fix the x and y coordinates or z and  and vary the action
with respect to I. Then, the flow equation for Il is given by:
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(7)

where, Pl and Ql are given by,

(8)

In Eq.(7), we are free to multiply the right hand side of the equation by a positive function
therefore, here, 1/(gβ) will produce nonlinear scale-space and keep the flow geometrical as
suggested in [2]. The exponent β will be discussed subsequently. Equation (7) can now be
rewritten as follows:

(9)

As a special case, we can easily obtain the isotropic complex diffusion equation in [5], by
applying Eq. (9) to gray scale image and setting the metric gμν to be the identity matrix. Then,
g is equal to 1, I(x, y) = IR(x, y) + iIM (x, y), and Eq. (9) is reduced to

(10)

(11)

There is no imaginary part in this case as the initial condition is just real. However, we can
create an imaginary part from non-zero θ via iteration.

3. DENOISING AND EDGE ENHANCEMENT EXPERIMENTS
Denoising an image by anisotropic complex diffusion has been introduced in [5]. The authors
have used imaginary part as stopping criteria and compared their method with the Perona-
Malik flow. They showed that the anisotropic complex diffusion can avoid staircasing effects
produced by Perona-Malik flow. However, their approach did not have a geometric
interpretation and they did not show how to improve the (imaginary part) edge enhancement
in a noisy image using a flow on an image graph-based representation. In this paper, we apply
our method to noisy color images uisng an image graph representation. There are two tuning
parameters in our model: the exponential parameter β in Eq. (9) and θ in the functional, F in
Eq. (6). In [5], large values of phase, θ, made edges represented by the imaginary part thicken
with increasing iterations, and small θ less than 5 degree was recommended for isotropic and
anisotropic diffusion to have sharp edges. In contrast, in our work here, large phase values
increases the magnitude of the imaginary part and slows down diffusion speed near edges. The
exponent, β of non-linear scale multiplier, 1/gβ, decides how the diffusion flows geometrically.
For example, the diffusion equations from Polyakov action with different β values leads to
different geometric flows: Beltrami flows, Panora-Malik flows, and Mean curvature flows
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[2]. The main purpose of this multiplicative factor is to achieve edge-preserving denoising. In
this paper, we choose β lager than 0.5 and smaller than 1. These two free parameters are chosen
empirically based on the amount of noise in the data.

3.1. Denoising Experiments
The results of denoising depend on parameters, θ and β as was in earlier approaches [2,5]. The
optimal choice depends on the amount of noise. The larger phase angles θ and βs lead to
diffusions more sensitive to edges. We applied the complex RGB flow to color images with
added gaussian noise (var=0.001) and compared the results with Beltrami flow. Our test image
had additive gaussian noise (25.3dB). Fig.1(a) and 1(b) show original image and the noisy
version respectively. We used the peak SNR (PSNR) as the stopping criteria for iterations. We
stopped the iterations when the denoised images reached the maximum PSNR. Fig.1(c) shows
denoised images using the complex (RGB) flow. The parameters values in our experiments
were set to θ = 7π/30 and β = 5/6. All the experiments reported here were implemented in
Matlab 2007a, on an Intel Core Duo 2.16 GHz CPU. We achieved the denoising using the
complex (RGB) flow with maximum PSNR 26.6 dB and in 38.6 sec. Fig.1(d) shows a denoised
image using Beltrami flow with maximum 25.4 dB in 13.8 sec. The result of the complex flow
depicts higher degree of smoothing than the Beltrami flow. When the noise is in the image
detail, Beltrami flow tends to confuse the noise as detail and this effect slows down the diffusion
velocity locally. Fig.1(e) shows the denoised image using Beltrami flow after 89.8 sec
processing time (500 iterations).

3.2. Enhancing edges
It has been shown in [5] that the imaginary part of the isotropic complex diffusion behaves as
the smoothed second derivatives of the original (real) image and as a shock filter. We can use
this imaginary part as the edge information contained in the given image. To obtain this
information from a noisy image, we can apply commonly used anisotropic flows as well as the
isotropic complex diffusion, [5]. Here, we applied the complex RGB flow to the noisy image
in Fig. 1(b) to obtain improved edge enhancement over that reported in [5]. Fig. 2(a) and Fig.
2(b) depict the imaginary parts of Fig. 1(a) and 1(b) respectively. The parameters settings are
θ = 7π/30 and β = 5/6. The images are rescaled to 8-bit RGB color images. Fig. 2(c) and Fig.
2(d) show the denoised imaginary parts from the complex diffusion after 38.6 sec and 72.4 sec
processing time respectively. The noisy parts of Fig. 2(b) have been smoothed and edges have
been preserved in Fig. 2(c) and Fig. 2(d) respectively.

4. CONCLUSION AND DISCUSSION
In this paper, we presented a novel formulation of the complex diffusion for simultaneous
image smoothing and edge enhancement. The formulation involved the use of an image graph
representation as an embedded manifold, a novel image metric and a novel action functional
yielding a new complex diffusion. The results showed improved performance over the Beltrami
flow reported in literature. Comparisons were reported on data with noise and using PSNR as
a quantitative measure. Our future work will involve application of our model to complex-
valued MRI data.
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Fig. 1.
(a) and (b) are an original image and the image with the gaussian noise of peak SNR 27.6dB
respectively. (c) is denoised image using complex RGB flows. The parameters are θ = 7π/30
and β = 5/6. (d) and (e) are images obtained using Beltrami flows with different processing
times.
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Fig. 2.
(a) and (b) are imaginary parts of Fig. 1(a) and Fig. 1(b). (c) and (d) are denoised imaginary
parts after 38.6 sec and 72.4 sec processing time respectively
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