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ABSTRACT

Information theoretical region merging techniques have been shown
to provide a state-of-the-art unified solution for natural and texture
image segmentation. Here, we study how the segmentation results
can be further improved by a more accurate estimation of the statis-
tical model characterizing the regions. Concretely, we explore four
density estimators that can be used for pdf or joint pdf estimation.
The first three are based on different quantization strategies: a gen-
eral uniform quantization, an MDL-based uniform quantization, and
a data-dependent partitioning and estimation. The fourth strategy is
based on a computationally efficient kernel-based estimator (aver-
aged shifted histogram). Finally, all estimators are objectively eval-
uated using a database with available ground truth partitions.

Index Terms— Density estimation, statistical models, region
merging, image segmentation.

1. INTRODUCTION
Image segmentation can be considered as a first and key step into im-
age analysis and pattern recognition. Commonly, a unique solution
for the image segmentation problem does not exist. To overcome this
situation, a hierarchical segmentation approach can be used where,
instead of a single partition, a hierarchy of partitions is provided. An
important type of hierarchical segmentation approaches are region
merging techniques. Starting from an initial partition, regions are
iteratively merged until a stopping criterion is reached. Thus, region
merging algorithms are specified by: a merging criterion, defining
the cost of merging two regions; a merging order, determining the se-
quence in which regions are merged based on the merging criterion;
and a region model that determines how to characterize a region.

Unsupervised information theoretical region merging (IT-RM)
techniques were presented in [1, 2] as a unified solution to natu-
ral and texture image segmentation. Formally, IT-RM techniques
use a statistical region model, leading under certain principles (such
as maximum likelihood and minimum classification error) to infor-
mation theoretic statistical measures as merging criteria, which, in
turn, can be combined with a maximum similarity (classical) or a
scale-based merging order. In our previous work, merging criteria
and merging order were objectively and subjectively evaluated in
terms of segmentation error using as statistical model estimator a
uniformly quantized version of the region empirical distribution.

These methods require models of pixel data for which, in gen-
eral, regions do not provide sufficient samples. This density es-
timation problem is the fundamental issue we are dealing with in
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this work. First, we provide evidence that using directly the (non-
quantized) empirical distribution of the region does not lead to the
best segmentation results. Second, we study the variation of the per-
formance for four different probability density and joint probability
density estimation techniques. We compare adaptive quantization-
based to kernel-based approaches, concluding that the smoother and
more detailed solution provided by the kernel-based estimators is
clearly superior. Results are relevant for other image processing
techniques using non-parametric density function estimation (as
mean-shift object tracking [3] or content-based image retrieval [4]).

The paper is structured as follows. Section 2 briefly reviews
the IT-RM techniques. Section 3 outlines the main problems of
the direct use of the original region distributions. In Section 4 two
quantization-based approaches are presented: a uniform quantiza-
tion with a variable number of bins for each image based on the
minimum description length principle [5]; and a non-uniform image
quantization strategy based on a data-dependent partitioning of the
empirical distribution [6]. Section 5 presents a computationally ef-
ficient approximation of continuous kernel-based estimators [7]. An
objective comparison of all estimators is performed in Section 6. Fi-
nally, conclusions are outlined in Section 7.

2. INFORMATION THEORETICAL REGION MERGING

IT-RM techniques (outlined in Figure 1) have been developed under
a statistical framework, leading to (i) a statistical region model, (ii)
merging criteria based on similarity measures between probability
distributions, and (iii) merging orders based either exclusively on
the maximum similarity or combined with scale information.

Depending on the statistical assumptions, two region models
have been proposed. First, when the region pixels are considered in-
dependent and identically distributed (i.i.d.), the region model is the
discrete probability density function for its pixel values [1]. Second,
when region pixels are considered statistically dependent, the region
model is the probability transition matrix of the Markov process [2].

Merging criteria have been developed under two different prin-
ciples. A merging criterion based on the Kullback-Leibler (KL) di-
vergence is obtained when we merge at each step the pair of regions
with maximum likelihood to have been generated by the same sta-
tistical model. In turn, when merging the pair of regions with maxi-
mum classification error, the resulting criterion is based on the Bhat-
tacharyya (BHAT) coefficient.

Finally, two merging orders have been proposed. A classical
maximum similarity order, that is, merging the pair of regions with
maximum similarity in terms of the specified merging criterion
(area-weighted); and a scale-based order, where the scale informa-
tion is used to merge with highest priority regions with areas too
small to be significant at each analysis level (area-unweighted).
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Fig. 1: Information theoretical region merging techniques.

The combination of the proposed region models, merging cri-
teria and merging orders leads to eight different techniques. They
are summarized in Figure 1, where n, P , and P refer to the area,
the probability density function, and the probability transition ma-
trix of a region, respectively. The Kullback-Leibler divergence and
the Bhattacharyya coefficient are represented as D(·||·) and B(·||·).

3. DENSITY ESTIMATION PROBLEMS WITH A
REDUCED NUMBER OF SAMPLES

In our previous work, the statistical region models were approxi-
mated by the empirical distribution (normalized histogram) and the
empirical probability transition matrix (cooccurrence matrix) of the
pixel data. Although one might think that using non-quantized em-
pirical distributions would provide better segmentation results, we
observed that quantization can reduce both under- and oversegmen-
tation errors (see Section 6). A similar conclusion was reported in
[8] for cooccurrence matrices in the context of texture analysis.

This fact is a consequence of the limited number of pixels to
estimate the region statistical models. This leads to the zero proba-
bility problem in the estimated densities (bins with zero probability)
which, in practice, may decrease the value of the similarity measure
between the densities (as illustrated in Figure 2a). In addition, it
may lead to a lack of overlapping between similar distributions. As
the statistical measures used as merging criterion only consider the
overlapping probabilities between the distributions, but not the dis-
tance (in terms of bins) between them, if two contiguous estimated
distributions belonging to a single real density do not overlap, their
similarity is exactly the same as two strongly separated distributions
(see Figure 2b).

In [1, 2], a uniform quantization approach with a constant num-
ber of bins was introduced to palliate these problems. Intuitively,
a moderate degree of quantization will reduce the number of bins
with zero probability and may help to overlap the distributions and
facilitate their merging. This concept is evaluated in Section 6.

Apart from the uniform quantization strategy using a fixed num-
ber of bins, we explore the performance of more sophisticated den-
sity estimators. These approaches are described in the next sections.

4. ADAPTIVE QUANTIZATION-BASED APPROACHES
4.1. MDL-Based Uniform Quantization
A uniform quantization of the original empirical pixel distribution is
used, but instead of fixing the number of bins, the degree of quanti-
zation is determined by the characteristics of the image. Concretely,
we apply the minimum description length (MDL) principle to deter-
mine an appropriate number of bins, through the minimization of the
stochastic complexity of the image, as proposed in [5].

(a) (b)

Fig. 2: Density estimation problems. (a) Zero probability problem in

the empirical distribution. (b) Non overlapping close distributions.

As proved in [5], the MDL principle recommends choosing the
number of bins M∗ as to maximize the following expression:

M∗ = arg max
M

∑
∀i

[(ni − 1
2 ) log(ni − 1

2 )

− (N −M
2 ) log(N −M

2 )) + N log(M) −M
2 log(N)] (1)

where ni is the number of samples which take values in ith bin, N
is the total number of samples, and M is the total number of bins.

For color (or multichannel) images, the MDL-optimal number
of bins for each channel is determined, and then, the median value is
selected to quantize all channels. For the Markov-based IT-RM tech-
niques, the MDL-optimal number of bins is used for each dimension
of the estimated cooccurrence matrix.

4.2. Data-Dependent Estimation
A universal estimator based on data space subdivision was proposed
in [6] for estimating the Kullback-Leibler divergence D(P ||Q) be-
tween two arbitrary continuous distributions P and Q. The algo-
rithm takes Q as the reference distribution and first divides the space
into a given number of intervals such that each interval contains an
equal number of samples of Q. Additionally, finer subdivisions may
be performed to intervals where the density of P is high relative to
the density of Q. The divergence between P and Q is estimated by
the ratio between the empirical probabilities in each interval.

Besides its fast convergence to the real value of the divergence,
it has been reported to perform well in applications where only a
reduced number of samples is available [4]. The reason is that this
approach assures that none of the resulting bins remains with zero
probability. The generalization to multidimensional distributions
(e.g., Markov-based IT-RM techniques) is straightforward [6].

In this work, two simplified versions of the data-dependent es-
timator proposed in [6] have been implemented. In both cases, for
computational reasons, a single division (not further refinement) is
applied. The algorithms are as follows (version name as in [6]):

(i) Version A: divides the space into M bins, such that each bin
has lM samples from Q, except possibly the last one.

(ii) Version C: divides the space into M bins, such that each
bin has lM samples from Q. Then, if an interval contains more than
αlM samples from P , it is further divided into intervals having αlM ,
except possibly one of them.

As suggested in [6], the parameters are set to lM = �(NQ)λ�
and αlM = �(NP )λ�, with λ = 1/2, where NP and NQ are the
total number of samples from distribution P and Q, respectively.
In addition, we explore other parameter setting, such as λ = 1/4,
and λ = 3/4. For completeness, the same data-dependent division
strategy is used for the techniques based on the Bhattacharyya coef-
ficient, though no theoretical justification has been reported for the
convergence of the estimator to the real value of this measure.

5. AVERAGED SHIFTED HISTOGRAM ESTIMATION
Kernel density estimators are non-parametric methods for estimat-
ing the probability density function of a random variable, generated
as a linear combination of a continuous kernel function, K(x). Since
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the complexity of a continuous Kernel estimator would be excessive
in a region merging (iterative) process, we propose to use averaged
shifted histograms (ASH), which can be seen as a computationally
constrained version of kernel estimators. They combine a set of m
histograms generated with a certain shift into the bin borders [7]. It
can be shown that when the number of histograms tends to infin-
ity, the ASH approximates the kernel estimator. In practice, ASH is
implemented by generating a histogram with smaller bin width, and
computing the discrete convolution with a triangular window:

fASH(k) =
1

nh

m−1∑
i=1−m

(
1 − |i|

m

)
p(k + i), (2)

where h and n are the original bin width of the averaged histograms
and the total number of samples, respectively. Thus, the ASH esti-
mator provides an averaged or low-pass filtered version of the his-
togram with fewer zero probability bins in the estimated distribution,
and a larger tail (that may increase the overlapping between con-
tiguous distributions). The ASH estimator can be generalized to the
multidimensional case, using a multidimensional triangular window.

6. EVALUATION RESULTS

In all experiments in this section, IT-RM techniques1 were applied
on initial partitions with 1500 regions to ensure that all initial re-
gions are large enough to initialize the statistical models. Partitions
were computed using a step-wise optimal (size-weighted L2-norm)
color-based region merging in YCbCr color space. The evaluation
was performed over a subset of 100 images from the Corel c© image
database [9]. Ground truth partitions were manually segmented in
the context of the SCHEMA project (http://www.iti.gr/SCHEMA/).

To evaluate the quality of the partitions obtained using the differ-
ent estimators, we use the distances defined in [10] and an extension
of the methodology in [9]. First, an asymmetric distance is proposed:
dasym(Π, Λ) �= dasym(Λ, Π). When Π is the partition to evaluate and
Λ its ground truth partition, the first ordering measures the percent-
age of undersegmented pixels (undersegmentation error: UE), and
the second, the oversegmentation error (OE) in Π with respect to the
ground truth partition. Second, a symmetric distance, dsym(Π, Λ), is
defined. When one of the partitions is the ground truth, this measure
quantifies the global quality of a partition, and its trade-off between
under- and oversegmentation.

The first relevant conclusion extracted from the current evalua-
tion is that the performance of area-unweighted methods is specially
sensitive to the probability distribution estimation. In fact, we have
observed that the main differences into the segmentation results are
not given by the region model (i.i.d. or Markov) or the merging
criterion (KL and BHAT measures perform similarly, although in
general BHAT is slightly superior), but by the merging order. For
that reason, we will refer to the behavior of area-weighted and area-
unweighted techniques for each density estimator. As a brief sum-
mary, area-weighted (area-unweighted) techniques present a lower
UE (OE). Nevertheless, area-unweighted techniques show a better
trade-off between both types of error, obtaining, for some specific
techniques, comparable UE results (see Figure 3). The complete
evaluation including all methods and all estimators can be found
at http://gps-tsc.upc.es/imatge/ Felipe/icip09/. Due to space limita-
tions, in this Section only the i.i.d. Bhattacharyya techniques (area-
weighted and area-unweighted versions) are shown for comparison
purposes in terms of UE and OE.

Uniform Quantization Evaluation: In our previous work, the
uniform quantization strategy (with 5 and 10 bins) was shown to

1For area-unweighted methods the scale parameter α was set to 0.07 [1].

Fig. 3: Mean symmetric distance for the IT-RM techniques using

fixed (uni Q) and MDL-adaptive (MDL) uniform quantization, ver-

sion A and C of the data-depending quantization (DDPvA, DDPvC),

and ASH estimator (ASH). For uni Q, ASH, and DDP versions, the

parameter values with minimum error are considered.

outperform state-of-the-art segmentation techniques [1, 2]. Here, an
evaluation in terms of UE, OE and global error as a function of the
number of bins has been performed. Due to space limitations, UE
and OE curves have not being included. They lead to the same con-
clusions exposed above. In Figure 3, the value of the symmetric
distance minimum for all IT-RM techniques is shown.

For the sake of clarity, in the comparative figures shown for the
other estimators, only the results corresponding to the optimal num-
ber of bins in terms of UE and of OE are shown.

MDL and Data-Dependent Evaluation: The second relevant
conclusion of the evaluation is that the MDL-adaptive uniform
quantization and the data-dependent estimation (Version A and C)
perform similar, and with comparable results to the fixed uniform
quantization approach. In the case of area-weighted methods, their
performance is close to that provided by the optimal number of bins
in terms of UE, but slightly worst in both UE and OE. For area-
unweighted methods the differences are more significant (see Figure
4, 1st and 3rd rows for UE and OE, respectively). In some cases,
MDL shows a better performance in terms of OE than the fixed
uniform quantization. However, MDL and data-dependent strategies
do not outperform in any case the uniform quantization approach
in terms of global quality (see Figure 3). In addition, there is no
significant variation of the data-dependent estimator performance
when using the proposed λ values. For the sake of clarity, all results
in this section correspond to the value of λ=1/2 suggested in [6].

ASH Evaluation: The third relevant conclusion is that ASH es-
timator outperforms the other estimation techniques. ASH estimator
smooth densities (with a larger number of bins) are a better and more
detailed approximation of the real region densities. This explains its
superiority compared to the quantization-based techniques, that tend
to piecewise constant density approximations.

Again, a larger performance variation is observed for the area-
unweighted techniques than for area-weighted techniques when
varying the m parameter (number of averaged histograms), as can
be seen in Figure 4, 2nd (UE) and 4th (OE) rows. In this example,
the averaged histograms correspond to the non-quantized empirical
distributions of the pixel data (i.e. using 256 bins). The value of
m is varied from 10 to 50 bins, which corresponds to averaging
from 4% to 20% of the number of bins into the histogram. For
area-weighted techniques, the ASH estimator provides a limited
performance improvement, reducing around a 6% the UE and a
2% OE in mean, with respect to the optimal uniform quantization
value. OE decreases as m increases, while UE shows a minimum
around m = 40. Nevertheless, compared to the local minimum of
the symmetric distance present around 5-15 bins for the uniform
quantization case, the ASH estimator for m = 40 decreases the
global partition error into a 10% in mean.
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Fig. 4: Performance comparison of density estimator for the i.i.d.

Bhattacharyya area-weighted (1st column) and area-unweighted

(2nd column) techniques. Mean UE and OE for: MDL uniform

quantization and data-dependent version A (DDvA) and version C

(DDvC) estimation (1st and 3rd rows); ASH estimator for different

number of averaged histograms, m (2nd and 4th rows). Curves cor-

responding to the optimal number of bins in terms of UE and of OE

for the fixed uniform quantization are also shown.

For area-unweighted methods the improvement is more signifi-
cant, around 15% of the UE and 14% of the OE. The UE decreases
as the number of averaged histograms (m) increases for values under
m = 30. For larger values, 30-50, similar values of UE are obtained.
OE behaves in the opposite way, increasing as m increases. This
leads to the best trade-off in terms of global quality for m around
40, that improves in more than 9% the global quality of the parti-
tions. A complete comparison in terms of symmetric distance with
the other estimators is outlined in Figure 3 and fully illustrated at
http://gps-tsc.upc.es/imatge/ Felipe/icip09/.

Figure 5 compares the partitions obtained by a uniform quanti-
zation approach and an ASH estimator, using the parameter values
minimizing the symmetric distance in each case (5 bins and m = 40,
respectively). ASH partitions show more regular and accurate con-
tours than the uniform quantization partitions and less oversegmen-
tation, as contours due to quantization effects do not appear into the
ASH partitions (for instance, see the segmentation of the lake in the
image in the 1st row, or the sky in the 3rd and 4th rows of Figure 5).

The increase of computational time of the ASH estimators with
respect to a fixed uniform quantization can be controlled by m and
by the number of bins in the original histogram. For instance, the IT-
RM technique selected to compute the examples in this section is 5
times slower using the ASH estimator with m = 40 and histograms
of 256 bins than using a uniform quantization with 5 bins, 2.3 times
slower using 128 bins and m = 20, and less than 2 times for 64 bins
and m = 10, without a significant variation of its performance.

Fig. 5: Fixed uniform quantization and ASH density estimation com-

parison (i.i.d. Bhattacharyya area-unweighted technique). Columns

from left to right: original image, human partition, partition com-

puted using uniform quantization (5 bins), and using ASH estimator

(m = 40), both with same number of regions as human partition.

7. CONCLUSIONS
The first conclusion is that the performance of area-unweighted
methods is specially sensitive to the probability distribution estima-
tion. The evaluation also shows that MDL uniform quantization and
data-dependent estimators do not provide an advantageous approach
since a computationally simpler strategy, such as a fixed uniform
quantization, presents a similar or better performance. On the con-
trary, ASH estimators are a valuable solution in applications where
the segmentation errors may be crucial or not being computationally
constrained, since an increase in computational time (which can be
controlled by m and the number of bins in the original histogram)
provides a significant improvement in terms of undersegmentation,
oversegmentation and global errors. Results are useful for other im-
age processing techniques using non-parametric density estimation
and facing similar problems due to the lack of available samples.
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