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AN INK TEXTURE DESCRIPTOR FOR NIR-IMAGED MEDIEVAL DOCUMENTS

Aaron Licata, Alexandra Psarrou, Vassiliki Kokla

Computer Vision Research Group, University of Westminster, HA1 3TP, United Kingdom

ABSTRACT

In this work we explore the task of authenticating and dat-

ing ancient manuscripts by capturing images of pages in near-

infrared (NIR) and modelling and then comparing the ink ap-

pearance of segmented text. We present a texture feature de-

scriptor to characterize and recognize semi-transparent mate-

rials such as the inks found in manuscripts. These textural

patterns are different in nature from perceptual entities such

as textons, tokens, frequency or repeatability of textural ele-

ments. Our ink texture descriptor relates a set of ink features

from various first and second-order statistics to semi-liquid

and viscous image-based properties of inks. In particular, we

propose eigen features from the joint gray-level probabilities

and off-diagonal sums of co-occurrence matrices. We test the

qualities of the features with a classifier trained with the ink

descriptor to show how well it recognizes eight different inks

of known composition. Presented with the very same task the

human visual system would fail to spot the ink composition

difference given the inks inter-class and intra-class distances

are extremely short.

Index Terms— Image Analysis, feature extraction, doc-

ument image processing

1. INTRODUCTION

Researchers in the area of art conservation and historians

are in need of authenticating and dating ancient or medieval

manuscripts. Such authentication or dating is usually pos-

sible through the study of manuscripts and the recovery of

historical information such as the year the manuscript was

written or facts described in the manuscripts. Computer vi-

sion techniques can be used as alternative diagnostic methods

by computing models and interpreting the visual properties

of the material used such as inks. In an early approach Kokla

et al. studied techniques for image-based ink classification of

historical documents using statistical modelling of ink inten-

sity using Gaussian mixtures [1]. In a later work, the same

authors consider co-occurrence matrices of ink intensities as

models of the joint probability of adjacent ink pixels in order

to represent the spreading behaviour of writing inks and clas-

sify eight specific ink compositions [2]. Dasari and Bhagvati
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manuscript analysis System 6th Program Framework)

used an 11-dimensional colour and texture vector to derive

within-class and between-class distance distributions for text

written with ball and gell/roller pens [3]. Another approach

is to capture the physical characteristics of liquid inks. In

forensics analysis Franke et al. employed Haralick texture

features of co-occurrence matrices and Support Vector Ma-

chines classifier to discriminate among three classes of ink

traces, solid, viscous, and fluid [4].

Visual properties of the inks captured in NIR spectrum

(700 nm to 900 nm) provide valuable cues to the type

of ink found in historical documents, such as Byzantine

manuscripts. A crucial assumption is that these cues are not

discernable to the naked eye, because of the perceptual lim-

itations of the human visual system. Frequency, perceptual

properties and repeatability of patterns are irrelevant to char-

acterizing ink type texture. For this reason, texture features

based on Gabor filter banks, wavelets, Fourier phase, auto-

correlation, edge masks, and textons are not well suited for

our purpose[5, 6, 7]. Some authors use MRF in old document

to separate out and remove ink-bleed from foreground ink

intended for reading [8]. However, our strategy differs in that

it seeks to extract precious ink spreading information even

from this areas of thinner ink spread. Our aim in this work is

to describe textural features that address ink profiling, and in

particular a texture descriptor that works well with the small

inter-class distances of various ink compositions. The work is

organized as follows: Section 2 describes the preprocessing,

and introduces the first-order and second-order statistical fea-

ture to encode ink fluidity in descriptors of small inter-class

distance, Section 3 details the experimental tests showing the

descriptor performance, and Section 4 presents conclusions

and future work.

2. TEXTURAL FEATURES FOR INK
COMPOSITIONS IN IR SPECTRUM

Inks imaged in NIR spectrum have the advantage that light

penetrates the ink outer surface without being excessively

absorbed by the materials. This optical property provides

valuable information to the image-based characterisation of

the spreading behaviour of the inks, and its descriptor. Ink

found on the manuscript must be correctly separated from the

support (e.g. the background paper, parchment, or papyrus)

before feature extraction. Image acquisition of manuscripts
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Fig. 1. Example of Byzantine manuscript image used to ex-

tract features from local patches.

Fig. 2. Intensity histograms of various ink types and densi-

ties. Columns represent different ink composition, and rows

different level of density of the ink. As can be noted in the fig-

ure, intensity distributions vary with different ink types and to

some degree even with physical density.

consistently took place in controlled lab conditions at similar

colour temperature (tungsten light), position and orientation

of the illuminants. Light intensity in images was normalised

with a simple piece-wise linear interpolation using a Kodak

Gray Card, so to correct gradients introduced by illuminants.

A local adaptive thresholding similar to the document bi-

narization algorithm proposed by Sauvola et al. [9] was

employed to segment the low-contrast NIR images.

2.1. First and Second-Order Gray-Level Statistics

The intensity distributions vary with different ink types and to

some degree even with physical density (Figure 2).We employ

first-order statistics such as moments up to the third order,

smoothness, and entropy of the histogram (Table 1). The first

moment statistic is notoriously variant to lighting conditions,

as it shifts with illuminant direction. And yet, after imposing

some constraints on the capture conditions (camera, and illu-

minant position, scale, and orientation), this feature is rather

rich in information.

Second-order statistics (table2) allow to capture the

spreading structure of textures such as ink. Typically, these

are hard for the preattentive part of the visual system to per-

ceive, as shown in a well known study by Julesz in [10]. Our

Feature Description

μ =
∑L−1

l=0 (bl)p(bl) histogram mean

σ2 =
∑L−1

l=0 (bl − b̂)2p(bl) histogram second moment

γ =
∑L−1

l=0 (bl − b̂)3p(bl) skewness

β =
∑L−1

l=0 1− 1
1+σ2 smoothness

H1 = −∑L
k=1 p(bl) log2 p(bl) histogram entropy

Table 1. First Order Textural Features

hypothesis is that second-order statistics of NIR imaged inks

help capturing patterns invisible to the naked eye. We use

co-occurrence matrices of gray-level intensities (GLCM) to

model these second-order statistics [11]. Contrast is a mea-

sure of the clearness of ink regions, and of the amount of

local variation. A low value of contrast results from images

of uniform ink. Entropy quantifies the amount of different

image intensity value pairs in the GLCM. For example, min-

imum entropy relates to the highly peaked distributrion of a

smooth and liquid ink texture, and maximum entropy to flat

distribution due to the generous amount of differently shaded

details in a viscous ink texture.

2.2. Weighted Sums Of Off-Diagonal Bands

The co-occurrence matrix has the property that off-diagonal

entries represent pair of intensities of a specific difference.

For example, the off-diagonal of rows i and columns i + 2
are all intensities pairs with a relative difference of two gray-

levels, regardless of the absolute intensity values. Groups of

off-diagonals (i.e. matrix bands) are the basis for the first of

the feature categories proposed in this paper.

The proposed set of four features are from the statistics of

different bands of joint gray-level intensities Pi,j is,

4⋃
b=1

⎧⎨
⎩

2(b−1)∑
w=b

L−w∑
i=1

Pi,i+w

⎫⎬
⎭ (1)

where b represents the number of bands, dummy variable

w is the width of the band in off-diagonal units, and L are the

maximum intensity levels. Adding up entries of the same off-

diagonal band is equivalent to create a texture statistic that is

partially invariant to illumination intensity changes.

2.3. Co-occurrence Spectrum

For the second category of proposed features, we view the

co-occurrence matrix as a collection of L-dimensional row

vectors pk, that is Pd = PT
d = [p1, ..., pL]T . Then, the co-

variance matrix Cov(Pd) of the symmetric matrix Pd pro-

vides information on the covariance of gray-level intensities

with respect to all other neighbouring intensities. The eigen

decomposition of the covariance matrix provides a compact
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Feature Description

γΦc
=

∑
i,j

{
p(i, j)(i− j)2

}
Contrast (Φc rads)

HΦc = −∑
i,j {p(i, j) log2 p(i, j)} Entropy (Φc rads)

λ
(i)
Φc
∈ ΛΦc

⇐ Cov(GLCMΦc
) eigenvalues

SΦc =
⋃4

B=0

{∑2(B+1)−1

δ=2B

∑
i,j p(i, j)

}
Bands Sums

Table 2. Second-Order Textural Features

Fig. 3. Ink descriptor distribution in feature space. Figures

3a,3c show different dimensions of the feature space in the

visible spectrum, where the first histogram statistic is plotted

against second moment of histogram, covariance eigenvalues.

Figures 3b,3d show corresponding plots in NIR spectrum.

description of the intensity spread spectrum in terms of eigen-

values, one for each gray-level.

Cov(Pd)Σ = ΣΛ (2)

where Σ is an orthonormal matrix of eigenvectors, and Λ
is an LxL diagonal matrix of eigenvalues. The first six largest

eigenvalues are then retained as features.

2.4. Ink Descriptor Space

The first and second order statistical features previously de-

scribed are extracted from samples of different image local

patches containing ink (see Figure 1). A sliding window

breaks up the patches in smaller and slightly overlapping

sub-patches, which makes the features invariant to mild

image rotations and translations. The intensity histogram

statistics and co-occurrence statistics are concatenated into

high-dimensional ink descriptors inkn, and normalised to

zero-mean and unit standard deviation.

inkn =
{

μ, σ2, γ, β, H1, γ0, H0, λ
(i)
0 , S0, γπ

4
, Hπ

4
, ...

}
(3)

Ink descriptors form clusters that are non-linearly dis-

tributed, besides forming a manifold embedded in higher-

dimensional feature space (see Figures 3c and d).

Fig. 4. Test images. a) the same ink was used to write ten

layers of the Greek alphabet at ten different densities. b) test

images capture the writing behaviour of an author as it is in-

fluenced by pen type and letter size. Penna type (p) often

results in accidental ink spills and larger spread areas, as op-

posed to the terser kalamus (k) and feather (f).

Fig. 5. Results of MLP ink classifiers trained with ink texture

descriptors. Confusion matrix for test data.

3. EXPERIMENTS

3.1. Dataset of Manufactured Inks

We test the ink descriptor performance with the ink dataset

used in [2]. A total of 480 writings on paper were captured

with a NIR (Near Infrared) camera. Hereafter we refer to

these as the model images. Each model image was generated

with different ink types[1] and under various writing condi-

tions(see figure 4b). From figure 4a the reader can observe

how each of the ten layers increases in ink density from top

to bottom. All images were captured with same optics, and

under consistent capturing conditions. Unlike carbon-based

inks, metal salts absorb less light, especially in NIR spectrum.

Fig. 6. Comparison of ink texture descriptors against true

positive rates (TPR). Co-Occurrence SAD, First-order, and

Haralick descriptors are more discriminative than Per-Pixel

Intensities. The proposed descriptor combines eigen features,

off-diagonal bands, first and second order statistics outper-

forming all others.
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1 2 3 4 5 6 7 8

recall(TPR) .77 .87 .80 .40 .77 .70 .80 .83

TNR .97 .97 .95 .95 .96 .98 .99 .94

precision .79 .81 .69 .55 .72 .81 .92 .66

Table 3. Performance of ink descriptor classifier. The hori-

zontal axis represent ink compositions, and the vertical axis

the corresponding true positive rate (TPR)and true negative

response (TNR) using the test classifier. 1,2,3=incomplete

irrongal, 4=fourna, 5=carbon, 6=irongall, 7=metalgall, and

8=mixed inks. Notice that recall percentage for ink 4 (Car-

bon) is only 40% due to its high level of NIR absorbance.

3.2. Descriptor Performance

The ink descriptor is tested with a MLP neural network clas-

sifier trained on features from 240 images and tested on the

remaining 240 images. Table 3 shows the recall, and preci-

sion rates for ink images recognized by the classifier trained

on the ink descriptors.

Trained images are classified correctly most of the times,

and test images 74% of the times on average across ink type

recipes. The confusion matrix in Figure 5 shows that de-

scriptors for carbon ink are the most difficult to discriminate,

even in NIR spectrum. Figure 6 shows results of comparisons

among the descriptors. Notice how all descriptors perform

poorly against ink type 4 (i.e. carbon ink) due to its high light

absorbance.

4. CONCLUSIONS AND FUTURE WORK

We have introduced a statistically-based texture descriptor for

material of different ink compositions to cope with short inter-

class distance. The descriptor is enriched by first-order and

second-order statistics, with a new feature based on weighed

off-diagonal bands and eigen decomposition of the covari-

ant matrix of local joint intensity co-occurrences. The re-

sulting texture descriptor has the disadvantage of being high-

dimensional, and in future work we plan to reduce redundant

dimensions. The advantage of the proposed ink texture de-

scriptor is that is suited to discriminate among ink composi-

tions in the NIR part of electromagnetic spectrum as the com-

parison tests show. We also demonstrated that the second-

order statistical nature of the features allows the descriptor to

discriminate among ink texture of different chemical compo-

sition, a task the human visual system finds extremely chal-

lenging to accomplish given the minuscule inter-class vari-

ance, which results in different ink composition surfaces to

be perceived as identical.
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