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ABSTRACT

We investigate energy allocation strategies in image sensor networks
for the purpose of maximizing the network operational lifetime. For
the application scenarios that we consider, visual coverage over a
monitored region is obtained by deploying wireless, battery-powered
image sensors. Each sensor camera provides coverage over a part of
the monitored region and a central processor coordinates the sen-
sors in order to gather required visual data. We characterize the net-
work lifetime as a stochastic random variable that depends upon the
coverage geometry for the sensors and the distribution of data re-
quests over the monitored region. Using this characterization we
consider optimized strategies for energy allocation among the sen-
sors that maximize the expected network lifetime. The formulation
naturally leads to a max-min optimization problem that aims to max-
imize the duration of coverage for the most critical region for which
the available energy is the least. We transform this problem into
an equivalent linear programming problem, leading to a computa-
tionally efficient solution. The effectiveness of the proposed energy
allocation strategy is validated by simulations.

Index Terms— image sensor network, network lifetime, energy
allocation, linear programming

1. INTRODUCTION

Image/Visual sensor networks (VSNs) have recently emerged as an
important subclass of wireless sensor networks [1,2]. The individ-
ual sensors in these networks consist of battery powered nodes that
integrate a camera with wireless communication and networking ca-
pabilities. Applications of these VSNs include surveillance, human
(patient) monitoring, and telepresence etc. Battery operations may
be mandated in several applications, for instance, for monitoring
an urban area following a natural disaster that causes power out-
age. Since the objective is to gather visual data from the sensors, the
deployment of the sensor nodes is often constrained by the availabil-
ity of mounting locations that are well-suited for capturing imagery
(e.g. lamp posts, power line poles, corners of buildings etc). A con-
sequence of these constraints is that the allocation of available en-
ergy among the sensors can have a significant impact on the network
lifetime and the optimization of the energy allocation is therefore of
interest.

The problem of optimal energy allocation is analogous to other
wireless sensor network’s where sensor locations are constrained [3,
4], with two important distinctions that justify our investigation.
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Firstly, unlike most other wireless sensor networks, meaningful def-
initions of lifetime for a VSN must take into account the visual cov-
erage provided by the network [5,6], which is determined by camera
(and scene) geometry and not by sensor proximity alone. Secondly,
in typical uses of VSN, only a subset of the data is of interest, e.g.
a surveillance network only interested in the moving objects. The
impact of the stochastic nature of the data requests imposes extra
challenges on performance analysis of the energy allocation prob-
lems. Our formulation addresses both of these aspects. We repre-
sent the network lifetime as a random variable (r.v.) that depends
on the coverage geometry and on the distribution of user requests.
This modeling of user requests leverages our recent work on sensor
scheduling in a similar application scenario [7]. Based on the mod-
eling of network lifetime, we formulate the lifetime-maximizing en-
ergy allocation strategy as an optimization problem and propose a
linear programming (LP) solution.

Though our formulation is valid for several classes of VSN, for
concrete discussion, here we consider optimal energy allocation un-
der an application scenario illustrated in Fig. 1, where image sensors
are deployed to provide visual coverage over a monitored region.
The network allows users to navigate around the monitored region
by specitying a desired viewpoint (position and direction) that varies
over time. The user’s viewpoint determines the part of the scene that
should be captured and transmitted to the user. The desired view at
the viewpoint is synthesized at a central processor (CP) by combin-
ing parts of the image sent from selected cameras. Given the total
available energy, we investigate energy allocation strategies to dis-
tribute energy among these sensors with a view to maximizing the
lifetime of the network.

2. PROBLEM FORMULATION

In this section, we present a formal description of our problem set-
ting and formulate the energy allocation problem. Our setting is
identical to that in [7], however, we address a different problem in
this paper. The target plane R is monitored by N Cameras {C; } j\le
Each camera C; is batteried with energy w; and covers a sub-region
of R denoted by V;. We uniformly divide R into M, blocks
{Ri,i € [M;]}, where [a] represent the set {1,2,...,a}. We rep-
resent the coverage geometry of the cameras in terms of this dis-
cretized representation, and define a coverage matrix B" € RMr*N
as

Bi, € I(R: C V), (1)
where subscripts i, j respectively denotes the row and column in-
dex of the matrix, and a C b indicates region(set) a lies within re-
gion(set) b, we also use I(A) to represent the indicator function:
I(A) = 1 when A is true and 0 otherwise. The subset of cameras
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Fig. 1. The target plane R is monitored by cameras {C; } JN=1. The user requests a
desired view U, the CP selects a subset of cameras to provide data and synthesize the
desired view. Regions that are covered by more cameras appear darker. Figure adopted
from [7].

that cover block R; is denoted by

roo def 7 .
A1) = {iIBi,; =1,j € [N]}. (2
The desired view U requested by the user is also uniformly di-
vided into M, blocks {U;,i € [My]}. The coverage matrix of
U is similarly defined as (1) by B* € RM“*N where BY; Lof
I(U; C V;), and the set of cameras that cover U; is denoted by

A (4) def {j|Bi; = 1,7 € [N]}. We assume the coverage matrices
represented by B", B* are known. Section 4 describes a practical
approach to determine B", B* in the VSN we consider. The net-
work provides user the desired view in a block-by-block manner.
For each block U;, 7 € [M,] in the desired view U, the network se-
lects a camera C; satisfying the coverage requirement that Bi'; =1
to transmit relevant data to the CP where an synthesized view of U;
is generated. We assume the energy required to transmit each block
R; is equal for all ¢ € [M,]. The methods to extract relevant data
and synthesize the desired view are described in Section 4.2.

We assume each block on the monitored plane is requested by
the user independently throughout the operation of the network and
the probability that block R; is requested is given by p;, where
Zfiﬂ pi = 1. We assume the CP uses a fixed selection rule to select
cameras in response to user requests’, therefore, the lifetime L of the
network is a r.v. with a probability mass function (p.m.f) determined
by {p,w,B"}, where p = [p1 p2 ... pa, |7 represent the distri-
bution of users’ requests and w = [w1 w2 ... w N]T stands for the
energy distribution in the network. The optimal energy allocation
strategy is indicated by the energy distribution w* that maximizes
the expected value of network lifetime denoted by E[L(p, w, B")],
where Zf\le W; = Wiot, Wior denotes the total available energy,
and E[-] denotes the expectation operator.

In order to obtain a tractable formulation of our problem, we
first map the energies of the cameras onto the monitored region and
define the coverage energy of a block R; as the sum of the energies
of all the cameras that cover R ;. Consider

m=B"w, 3)

where m € R and the i*" entry m,; represents the coverage en-
ergy of R;. We next approximate the network lifetime as a function

IThe optimal camera scheduling is considered in [7] using a closely re-
lated and compatible formulation.
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Fig. 2. An abstracted representation of the network lifetime. M, boxes {Bl}?iq

contains m; balls respectively. At each request, a ball is taken from B; with probability
pi. After L requests, one of these boxes first become empty. E[L] corresponds to the
expected network lifetime.

of {m, p} by using an abstraction for our problem as illustrated in
Fig. 2. In this abstraction, we represent the i*" monitored block R
by a box B; and the coverage energy of this block by m; balls. Each
request of the block R; on the monitored plane consumes energy
equivalent to one ball. Since block R; is utilized with probability
pi, the expected number of utilization after which the energy is en-

tirely consumed can be represented by 7;‘ and correspondingly the

expected lifetime can be given by’

mi1 M2

E[L(m,p)] ~ rnin(p—17

M, )

RN “4)
b2 PM,

This approximation in (4) is close provided the energy in each cam-
era is large as compared to the energy for a single access and pro-
vided the difference between the two smallest values in {7 M s
not negligible [7]. The optimal energy allocation is now defined as
the strategy that maximizes the expected lifetime E[L(m, p)].

Using (4), the optimal energy allocation w* is obtained as the
solution to the following max-min optimization problem,

max min{f;}1 )
N
s.t.Zwi = Wtot
i=1
f=PB'w
where f; def % fori=1,2,...,M,and f = [f1, fo, ..., f;.], P

1 1 1}.

is the diagonal matrix formed by the vector [E’ P30 Pan

3. REFORMULATION OF OPTIMAL ALLOCATION AS A
LINEAR PROGRAMMING PROBLEM

It can be seen that our formulation above corresponds to maximiza-
tion of a concave function. Although numerical routines are avail-
able to address the optimization problem (5), it is not well-behaved
partly due to the fact that the objective function in (5) is not differ-
entiable everywhere, motivating our search for more efficient algo-
rithms to solve (5).

We next transform the optimization in (5) into a LP problem, for
which efficient algorithms can achieve accurate solution in polyno-

2 A more formal analysis leading to the approximation is presented in [7]
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Fig. 3. The operation of the network.

mial time [8]. Introducing a new variable ¢, we rewrite the max-min
optimization problem of (5) as the equivalent linear programming
problem:

min ¢ (6)
N
s.t. Zwi = Wrtot
i=1
f=PB'w

—figt,wi >0, fori:1,2,,..,Mr

The LP (6) can be rewritten in standard LP form by defining
u [wT, ], thus the objective function can be written as h™u

where h &' [07,1]7 and O denotes a N x 1 vector with value

0. The constraints in (6) can also be rewritten in terms of u. The
optimal values of w*, ¢* are obtained simultaneously by solving the
LP problem for u* = [w*7, ¢*].

4. SYSTEM SCENARIO

We describe the implementation details of the VSN illustrated in
Fig. 1. In the initialization stage, the coverage information B* and
B" for the image sensors is obtained. In the functional stage, for
each of desired view U requested by users, the network selects a
subset of the cameras to provide the visual data. The synthesized
view U is generated at the CP using received data.

4.1. Initialization Stage

Coverage information can be obtained by estimating parameters of
the cameras deployed in the network, commonly referred to as cam-
era calibration [9]. Using a homogeneous representation, the image
coordinate x = [z1 z2 3]7 ofa 3D point X = [X; Xo X3 1]7 is
given by x = PX, where P € R*** denotes the camera projection
matrix [9] which is determined by intrinsic parameters (such as fo-
cal length) and extrinsic parameters (orientation and location) of the
camera. We use plane-based camera calibration methods [10,11] to
estimate these camera parameters.

The coverage matrices B” and B" are estimated after calibrat-
ing the cameras. A world point X is covered by a camera Cj if the
image coordinate of this point x lies within the FoV of this camera
Vs. An example of coverage estimation can be found in Fig. 1. Now
given the total available energy w:o¢, the distribution of user requests
P, and the coverage matrix B", an energy allocation procedure is in-
voked to distribute w¢o: among N cameras and obtain w. We have
w = w™ for our optimal allocation procedure.
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4.2. Functional Stage

For each block U; in the desired view U, we select a camera Cs in
order to capture and transmit relevant data. This camera is selected
according to a camera selection strategy described in [7], which at-
tempts to maximize the remaining network lifetime by maximizing
E[L(m, p)].

At the CP, the raw data for each desired block U/; must be trans-
formed and mosaiced together to synthesize the desired view. The
mosaicing is described by a homography [9] for the texture image
of a planar surface (our case). Without loss of generality, we as-
sume X3 = 0 for all world points X on the monitored plane and
let X, = [X1 X2 1]T where we neglect X3 = 0, represents a
world point on this plane. The image coordinate x can be written
as: x ~ HX},, where ~ indicates equality up to a scale factor and
H € R3*3 is a matrix denoting the homography between the camera
plane and the target plane. H can be calculated from the parameters
of calibrated cameras. Let x1, x> denote the image coordinates of
world point X, in two cameras, then the following equality holds
’H;lxl = X = ’H;le, thus xo can be obtained from x; as
x1 = H1H; 'x2. This relation allows the view at user’s desired
viewpoint to be rendered from corresponding regions in the selected
camera. The CP also keeps a record of previous user requests in or-
der to obtain an estimate of the distribution of these requests, if this
distribution is not provided as a priori.

5. SIMULATION

We perform simulations to validate the proposed energy allocation
scheme. N cameras are placed randomly within a 4m x 3m field
located 3m from the target plane R which is of size 4m x 3m (typ-
ical size of a wall). Users’ viewpoints are generated according to a
separable Gaussian distribution with its maxima at the center of the
wall, with a standard deviation of 0.3m along the two dimensions.
The probabilistic distribution of each block on the monitored plane
being requested, i.e. p, is obtained by a Monte-Carlo simulation.
All cameras and users’ views point toward the target plane with a
random rotation up to 0.1 radian along each of the three axes. We
further assume all cameras and the users’ viewpoints have images of
200 x 200 (in pixel units). The camera images are rendered by using
the scene geometry (homography).

We first conduct a Monte Carlo simulation in order to determine
the number of cameras required for adequate coverage of the target
plane [6]. We found that using a focal length fo = 427.5 (in pixel
units)®, a minimum of 50 cameras are necessary in order to ensure
(with 99% confidence) that the target plane is covered in the begin-
ning. We thus use N = 100 cameras to provide enough coverage
redundancy.

We simulate a scenario that the total available energy wios 1s
50, and the transmission of a frame of camera image costs 1.J of
energy. At each time instant, a desired view is requested. We gen-
erate 100 user’s viewpoints in each simulation and present averages
over 100 simulations. Two energy allocation schemes are compared,

e Optimized allocation by solving (6) using LP (LinOpt).

e Uniform distribution of the total available energy w:,+ among
all the cameras (UniForm).

Figure 4 compares the percentage coverage on the target plane
over time for the energy allocation schemes above. The figure clearly

3For an image sensor with size 35mm x 35mm, this would correspond
to focal length of 75mm.
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Fig. 5. Comparison of lifetime using different focal lengths.

illustrates the benefit of the proposed optimized energy allocation.
When the lifetime is defined as the duration over which 95% of the
monitored area is covered, LinOpt prolongs the network lifetime by
a factor of almost 2 compared to the unoptimized UniForm scheme.
Direct solution of the max-min problem (5) yields performance very
close to LinOpt (as expected) but requires much more computation
(2.3s v.s. 157s for Matlab™ based implementation).

For the different energy allocation schemes, Fig. 5 examines the
effect of the focal length of the cameras on the network lifetime for
focal lengths 2 fo, fo, and 3 fo. We observe from Fig. 5 that en-
ergy allocation using LinOpt is more effective as the focal length in-
creases. When the focal length is small, LinOpt and UniForm have
similar performance. This behavior can be anticipated because as
the focal length decreases, the fields of view of the cameras become
enlarged resulting in greater overlap and consequently less benefit
from the optimal allocation. In the extreme case when each camera
covers the entire target area, the lifetime is independent of energy
allocation.

6. DISCUSSION AND CONCLUSION

In this work, we propose a probabilistic formulation for the life-
time of a user-centric image sensor network, based on which the
lifetime-maximizing energy allocation strategy is formulated as a
linear programming problem. The proposed formulation explicitly
address the unique characteristics of the coverage problem in VSN,
and stochastic user interactions. Simulation results demonstrate the
advantage of the proposed methodology over a naive uniform allo-
cation scheme.

We conclude this paper with a few remarks. Firstly, although we
consider a simple application, the analysis can be extended to other
VSN applications, e.g. a surveillance system designed to capture
moving objects. In this scenario, the coverage information B", B*
can be estimated by suitably discretizing the monitored area (e.g.
3D space can be divided into small cubes). The rest of the analysis
is identical with that presented in this paper. Secondly, our formu-
lation maps the energy from the cameras onto the target area in (3).
Note that in this process, we are neglecting the fact that, at each user
request, the change in the energy of the selected camera Cs, will in
fact change the energy distribution not only over the block being re-
quested, which we shall account for, but also over the other blocks
for which C, provides coverage. As a result, our approach yields
sub-optimality. However, this sub-optimality is mitigated when the
focal lengths of the sensors are reasonably large as demonstrated by
our simulations.
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