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ABSTRACT
Functional properties of living tissues appear in PET, whereas

structural information at significantly higher resolution and

better image quality is provided by other modalities, such

as CT or MRI. We illustrate how structural information of

matched anatomic images can be used as priors in the to-

tal variation denoising and blind deconvolution of functional

PET images. Experiments on phantom images and clinical

data validate the proposed method.

Index Terms— PET, total variation, denoising, deconvo-

lution, PET/CT, PET/MRI

1. INTRODUCTION

PET examination is a well established method in medicine,

mostly for identifying lesions as being malignant or benign.

Surgery for the lesion is almost always based on structural

examination provided by MRI or CT. A problem for surgery

appears if the existing pathological tissue is not identifiable

by MRI/CT but can be seen by PET (as for example in some

cases of epilepsy patient). As the PET scans are structurally

not precise enough it is difficult for neurosurgeon to identify

the brain lesion and there is a need for an invasive explo-

ration of the brain, hence increasing the perioperative mor-

bidity. Making the PET image more focused and less noisy

would decrease the risk of surgery.

PET denoising methods based on the wavelet transform

have been reported to increase accuracy and precision of PET

images in a wide variety of contexts [1]. In order to pro-

vide further improvement of PET images, it was acknowl-

edged that the structural information in MRI or CT can be

used. Using structural information in image processing is

not a new idea, e.g., denoising and deconvolution of images

using predicted edge location was proposed recently in [2].

Boussion et al. [3] proposed denoising of PET images in the

wavelet domain while using high frequency information from

CT or MRI. This is achieved by replacing high-pass bands of

PET, which are extremely noisy, with high-pass bands of the
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structural image, which contain details invisible in PET. The

appropriate scaling between PET and MRI/CT wavelet co-

efficients at the finest resolution was obtained by assuming a

global linear relationship between PET and MRI/CT wavelets

at the lower resolution. Recently, Turkheimer et al. [4] pro-

posed an improved method, which relaxes the assumption of

a simple scalar relation between structural and functional in-

formation and postulated a stochastic model.

Apart from noise and low resolution, blurring is an ad-

ditional significant factor that degrades PET images. Uncer-

tainty caused by positron traveling distance, photon emission

angle, scatter, and detector response can be model by a blur-

ring function, i.e. convolution with a point spread function

(PSF). If the shape of PSFs is unknown, we face a blind de-

convolution problem. An attempt to tackle this complicated

problem is given in [5], where an EM reconstruction tech-

nique incorporates the blurring function and estimates PSFs

in the process. Recently, Siemens introduced the TrueX im-

age processing technology, which reduces blurring introduced

by fuzzy response of detectors further away from the center

of the field of view.

In this paper, we formulate the PET reconstruction as a

blind deconvolution and denoising problem constrained by

structural information from MRI/CT. The novelty of the pro-

posed method is in the way how the image prior is built, which

consists of total variation (TV) seminorm of the MRI/CT data.

The rest of the paper is organized as follows. Section 2 dis-

cusses the proposed method, Section 3 provides experiments,

and Section 4 concludes the work.

2. METHOD

We assume that the relation between the unknown (sharp and

clear) PET image f and the measured PET image g is given

in the vector-matrix form by

g = Hf + n , (1)

where H represents an unknown blurring matrix, and n rep-

resents additive noise. The blurring matrix H is fully deter-

mined by its PSF, which we denote as h. All the images are
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assumed to be lexicographically ordered into column vectors

with pixels addressed by a single index i.
The proposed denoising and blind deconvolution ap-

proach follows the Bayesian paradigm. The posterior distri-

bution takes the form

p(f ,h|g) ∝ p(g|f ,h)p(f)p(h) (2)

and based on its knowledge, the inference on the sharp

image f and PSF h is done. Since the posterior distribution

can not be calculated in closed form, the common strategy

is to approximate it by a product q(f)q(h) and a variational

approach is used to find expressions for the simplified distri-

butions q(·). If q(·)’s are assumed to be delta functions, the

variational approach becomes a maximum a posteriori (MAP)

method. In our implementation we adopt the MAP approach.

This leads to an iterative algorithm [6], which alternates be-

tween the maximization of (2) with respect to the image and

the maximization with respect to PSF.

The first term in (2) emanates from our model. Assuming

that the observation noise n in (1) is Gaussian with zero mean

and variance α−1, we obtain

p(g|f ,h) ∝ exp
{
− 1

2
α‖Hf − g‖2

}
.

A difficult issue is the choice of prior distributions in (2).

Typically, PSFs in PET are smooth and therefore we use si-

multaneous autoregression for the PSF prior distribution:

p(h) ∝ exp
{
− 1

2
β‖Lh‖2

}
,

where the matrix L denotes the Laplacian operator and β is

the inverse variance of Gaussian distribution. This prior fa-

vors PSFs with small second derivatives, hence smooth func-

tions.

However, the key idea of this paper is in the derivation

of the PET image prior distribution p(f). Total variation is a

common choice for the image prior. It works as an anisotropic

diffusion, which preserves edges. In the discrete case, the TV

prior is defined as

p(f) ∝ exp{−γTV(f)} (3)

with

TV(f) =
∑

i

√
(Δx

i f)2 + (Δy
i f)2 ,

where Δx
i and Δy

i represent first order differences in x and y
direction, respectively, at the pixel position i. The derivative

of TV is nonlinear and one must employ linearization tech-

niques, such as half-quadratic algorithm [7], in order to work

with this prior. For the purpose of our discussion it suffices to

state that after linearization we obtain

TV(f) = fTLf ,

whereL is a symmetric block diagonal matrix constructed

from Δx
i f and Δy

i f . Since L depends on f , L is updated af-

ter every iteration of the standard half-quadratic algorithm. In

smooth areas, L is isotropic and resembles the Laplacian op-

erator, whereas on an edge, L becomes directional and this al-

lows smoothing only along the edge but not across. Some ob-

ject boundaries in the structural image coincide with bound-

aries barely visible in the functional image. Therefore it is

legitimate to assume that the information about edges in the

MRI/CT image can be utilized in the PET prior. In order to

derive the new PET prior, we thus use (3), but construct L
from the MRI/CT image instead of the updated PET image in

each iteration. We call it the STV (structural TV) prior and it

gives higher probability to edges that coincide with MRI/CT

edges. It is important to note that this does not mean that

all MRI/CT edges will start to appear in the reconstructed

PET image but only those, which are intrinsic to the PET im-

age. This is a fundamental difference from the wavelet-based

methods [3, 4], which replace noisy high-pass bands of PET

with MRI/CT and insert thus fine details irrespective of their

true existence in PET. Our method performs denoising and

deconvolution of PET and uses MRI/CT only to control dif-

fusion. An additional advantage of the STV method is that

it is robust to misregistration between PET and MRI/CT as

opposed to the wavelet-based methods. Since the proposed

method also estimates PSFs, it can compensate for slight mis-

alignment by automatically shifting the center of PSFs.

3. RESULTS

Performance of the proposed STV method was evaluated on

two data sets: Jaszczak SPECT phantom [8] and abdominal

section of a human body. Comparison was carried out with

the state-of-the-art wavelet-based denoising method proposed

in [4]. All the data were acquired by a hybrid PET/CT cam-

era Siemens BIOGRAPH DUO LSO. PET images were first

upsampled to the CT resolution and than processed by the

wavelet-based and proposed reconstruction algorithm. Ob-

jective performace evaluation is difficult to carry out as we

lack a sharp noise-free PET image. In the case of phantom

images, we calculated PSNR and for the sharp PET image we

used the CT modality correctly radiometrically transformed

to match the intensities of the PET modality. However, visual

(subjective) assessment still remains the most reliable evalua-

tion method.

An example of one slice of the phantom volume acquired

in both modalities (PET and CT) is given in Fig. 1. The phan-

tom contains cold rods of different dimensions positioned into

triangles oriented around the center. The 3D reconstruction

method was OSEM (Ordered Subset Expectation Maximiza-

tion) with 6 iterations and 16 subsets with no post-processing

Gaussian filtering to avoid any additional blurring. Fig. 2

shows reconstruction by the wavelet-based method and by our

STV method. Both methods give equal results in terms of de-
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noising. However, the proposed STV methods shows supe-

rior performance around edges with contours better localized.

This fact also illustrates Fig. 3 by comparing line profiles of

the reconstructed images. The position of the line, of which

profiles are drawn, is shown in Fig. 1(a).

(a) CT (b) PET

Fig. 1. Example of a phantom volume acquired by a

combined PET/CT scanner: (a) CT (512x512x159) image

and (b) corresponding PET (256x256x47) image, PSNR =
24.91dB.

(a) WT-based reconstruction (b) STV-prior reconstruction

Fig. 2. Reconstruction of PET images using structural infor-

mation from CT: (a) wavelet-based denoising approach pro-

posed in [4] PSNR = 25.43dB, (b) our STV-prior denoising

and deconvolution method PSNR = 25.39dB.

Combined PET/CT scanners provide both modalities in

perfect spatial alignment. However, such scans are still rare

and measurements must be done separately, not to mention

that combined PET/MRI scanners do not exist. We must first

apply registration methods to spatially align functional im-

ages with structural images, which is a complicated task. Of-

ten the registered modalities still contain some misalignment.

Hence it is desirable if the denoising algorithm is robust to

misregistration as is the case of the STV method. Fig. 4 il-

lustrates the reconstruction when the CT image was artifi-

cially shifted by 5 pixels (approx. 5mm) in the x and y di-

rection. The wavelet-based method removes noise but blur-

ring remains, whereas our STV method provides the same

sharp image as in the case with correct registration. Calcu-

0 50 100 150 200
Distance along profile in pixels

Fig. 3. Line profile at the location depicted by the solid line

in Fig. 1 in: (bottom solid) CT image, (top dashed) WT-based

reconstruction in Fig. 2a, (top solid) STV-prior reconstruction

in Fig. 2b.

lated PSNRs confirm our visual assessment as PSNR of the

wavelet-based method drops while PSNR of the STV method

remains almost the same (see figure captions). Estimated

PSFs in both experiments for properly aligned and shifted CT

image, respectively, are in Fig. 5.

(a) WT-based reconstruction (b) STV-prior reconstruction

Fig. 4. Reconstruction of PET images using structural infor-

mation from misaligned CT: (a) wavelet-based denoising ap-

proach proposed in [4] PSNR = 24.77dB, (b) our STV-prior

denoising and deconvolution method PSNR = 25.17dB.

Finally, we applied the proposed STV method to a

CT/PET pair of the abdominal section; see Fig. 6. In this

case, the PET image was post-processed inside the CT/PET

scanner by a Gaussian filter to reduce noise. For denoising

methods it would be better to work with the original noisy

PET image, but since this is a standard post-processing pro-

cedure used by physicians, we wanted to test if the method

can be applied to readily available images. The wavelet-based

denoising method was not able to improve the image quality

and the results is not shown here. On the other hand, the

output of the STV method shows several tumors in the liver
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(a) CT (b) PET (c) STV-prior reconstruction

Fig. 6. Reconstruction of a PET image using structural information from CT: (a) CT image, (b) PET image, (c) STV-prior

reconstruction.
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Fig. 5. PSF estimation in our STV-prior reconstruction

method for (left) CT and PET accurately registered, (right)

CT and PET with misalignment of 5mm in both axes.

sharper and thus better localized.

4. CONCLUSION

We have proposed a denoising and blind deconvolution MAP

method for PET images, which includes structural informa-

tion from MRI/CT images as a modified TV prior distribu-

tion. The proposed method provides better focused PET im-

ages and it is robust to misalignment.

We plan to test the method further on other clinical data.

The primary goal will be to evaluate whether the reconstruc-

tion algorithm works also on MRI/PET pairs and if the im-

proved PET images can help to perform surgery.
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