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Abstract

Predicting the age of a person through face image analysis holds the potential to drive an extensive 

array of real world applications from human computer interaction and security to advertising and 

multimedia. In this paper the first application of the random forest for age regression is proposed. 

This method offers the advantage of few parameters that are relatively easy to initialize. Our 

method learns salient anthropometric quantities without a prior model. Significant implications 

include a dramatic reduction in training time while maintaining high regression accuracy 

throughout human development.

Index Terms
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1. INTRODUCTION

Human faces contain important attributes which can be used for many computer 

applications. Attributes such as identity, age, gender and expression form core parameters 

that can govern applications such as human computer interaction, security and advertising. 

The attribute of age alone, can be used for many tasks including but not limited to: 

restricting content to minors and facilitating user requests to retrieve face images from a 

database.

Automated age estimation would facilitate many applications, however it remains an open 

research problem due to the challenges involved. Non age-related variations in face images 

including facial expression, head pose and scale (Fig. 1a–d), confound automated 

identification of salient age related features. Additionally, age appearance is influenced by 

both internal factors (true age, genes, gender) and external factors (living location, eating 

and smoking habits, makeup, and hair dyeing).

Age estimation methods can be grouped into three categories [1]: 1) anthropometric 

methods [4,12] that explicitly model facial shape and texture changes during growth, 2) 

aging pattern subspace [2] that learns a subspace representation of aging sequences and 

estimates age by projecting the test face into the subspace, and 3) age regression 
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[1,3,5,6,7,16]; e.g., in [5] a quadratic model for age regression based on least square 

estimation criterion is constructed. In this paper, we present a method which combines 

characteristics of both the first and third categories. Age estimation is also related to the 

problem of age synthesis (e.g., [10]) and face verification (e.g., [8,9]).

Our method performs age regression using information related to anthropometric 

measurements. However instead of defining a complex cranio-facial model we learn the 

important anthropometric features automatically. To achieve these goals, we exploit the 

machine learning method called the random forest [14]. To the best of our knowledge, this is 

the first use of random forest for age regression of faces.

Renowned for its speed of training and robustness to over-fitting, we hypothesize that the 

random forest will be a valuable tool for feature selection and prediction in age regression. 

We derive basic facial measurements from a simple labeling of landmark points around the 

nose, eyes, chin and mouth. Such measurements are well known to change during 

development up to the age of 20 years [11], after which face growth plateaus. With a focus 

on faces aged 0–20 years, our task is to build from a simple labeling both an understanding 

of which measurements are important and a learner which can perform age regression on 

novel test faces. In section 2, we briefly review the random forest and the measurements we 

derive from the landmarks. In section 3, we describe our results on the publicly available 

FG-Net face aging database [13] (Fig. 1e). In the remaining sections we discuss significance 

of the rapid speed at which the method estimates feature importance and test error.

2. METHODS

2.1. Problem statement

The problem we set out to address in the paper is: given a training database of face samples 

consisting of face images, associated face landmarks and a known age of each sample, 

develop a machine learning method to predict the age on novel untested samples.

2.2. Random forest ensemble learner

The random forest [14] is an ensemble learner consisting of a collection of tree-structured 

base learners. Each base learner is a classification and regression tree (CART), and for 

regression, each tree individually predicts the target response while the forest predicts the 

target as the average of the individual tree predictions.

Formally, a random forest, RF, is a collection of tree-structured learners:

RF = ht X, θt , t = 1…Ntrees (1)

ht is the tth individual tree, ht( . ) is the tree’s prediction, and Ntrees is the number of trees. X 

denotes our database of samples: X={Sk} for k=1..Nsamples, where each Sk is a face record 

(i.e. database sample). X is divided into two disjoint subsets. One subset is used to train or 

grow the learner ht. The other subset is used to test the learner’s prediction accuracy. θt are 

i.i.d. random variables. The nature and dimensionality of θt depends on the use of 
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randomness in the ensemble construction. For a random forest there are two sources of 

randomness: 1) The first source of randomness is the selection of a training set from X 

known as a bootstrap set, which is used to grow (train and define) each tree. This bootstrap 

set is a random selection of Nsamples face records drawn from X with replacement. 2) The 

second source is the random selection of mtry features (also called predictors) to try as input 

at each node in a tree being grown. To define a node in a CART-based tree, a decision 

threshold is selected which partitions the node input samples into two subsets which 

maximize a purity measure. For a random forest, each tree is grown until nodes have split 

their inputs into subsets that consist of samples containing just one label (i.e. they are 100% 

pure).

An important characteristic of the random forest is that while growing each tree, an estimate 

of test error can be constructed from the training samples. For each tree grown, 

approximately 36% of the samples in the training set are not selected in the bootstrap and 

are known as the out of bootstrap (OOB) samples. Using these as input to the corresponding 

tree enables the random forest to obtain response estimates for them, just as if they were 

untrained test samples.

2.3. Image landmarks and features

The database consists of the set of face records (database samples) which are 4-tuples 

containing: a face image, face landmarks, face age and derived features for the face. We 

denote the database samples as Sk={Ik, Lk, Ak, Fk} where k=1..Nsamples. Ik is the face 

image, Lk is the set of landmarks on the face Ik, Ak is the age of the face in the image, and 

Fk is the set of features (i.e., candidate predictors) derived from {Ik, Lk} whose nature 

depends on how we solve the feature selection task. We discuss this feature selection in the 

next three sections. For each sample, Lk contains the set of N corresponding landmarks 

Lk = 𝓁i i = 1..N where 𝓁i are the members of the domain of Ik. For each age we have Ak ∈ 

ℝ.

In regression, a challenging task is to define the predictor features, Fk, that facilitate training 

the base learners so they can accurately predict the target on novel data. A strategy with 

growing popularity is to define multiple candidate predictors (CP) and then use a learning 

algorithm to help determine which are most useful. By using a large generous pool of 

predictors, we increase the chances that we include the useful information for training and 

learning from the data. In the sections that follow, we adopt such a strategy to define three 

types of candidate predictors: 1) normalized inter-landmark distances (CPL), 2) ratios of 

Voronoi cell areas (CPV), and 3) ratios of Delaunay triangle areas (CPT). In summary, for 

each face sample Sk, we define its derived features Fk as: 

Fk = ∪ CPLp k
, CPVq k

, CPTv k
. Details are explained in the following subsections.

2.4. Normalized inter-landmark distances

We begin with the candidate predictors that are perhaps the easiest to understand. These are 

the set of inter-landmark distances for each Lk in our database. We denote the set of such 

distances for Lk as Dk={CPLp},p=1..C(N,2), where
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CPLp =
𝓁a − 𝓁b

ek
where a, b ∈ [1..N], b > a, (2)

where ‖ . ‖ indicates the Euclidean distance, C(N,2)=N(N−1)/2 enumerates the number of 

point pairs for a face sample, and ek is the Euclidean distance between the eyes for image k, 
which is used for scale normalization.

2.5. Ratios of Voronoi cell areas

The next type of candidate predictor is composed of the ratio of the areas of Voronoi cells. 

Given a set Lk of N distinct landmarks in ℝ2, the Voronoi tessellation is the partition of ℝ2 

into N polygons vo 𝓁i  where li∈ Lk. The set of loci in ℝ2 that is closer to li than any other 

landmark in Lk is called the Voronoi cell of li and is denoted as region vo 𝓁i :

vo 𝓁i = x ∈ ℝ2 x − 𝓁i ≤ x − 𝓁 j ∀𝓁 j ∈ Lk − 𝓁i (3)

We denote the set of cells in the tessellation of Lk as Vk = vo 𝓁i  where li ∈ Lk. The 

tessellation produces one cell per landmark, li, hence it is a regular partition of the face 

sample’s image domain into N regions. We define additional candidate predictors for Lk as 

the ratio of the areas of any two cells of Vk:

CPVq =
area vo 𝓁a
area vo 𝓁b

where a, b ∈ [1..N], b > a (4)

The number of ratios for every sample is C(N,2). In (4) area(.) is the area of the polygon 

defined by its Voronoi cell vo argument. By forming ratios for these candidate predictors, we 

account for variability in the overall scale of the image domain I.

2.6. Ratio of Delaunay triangle areas

Our third type of candidate predictor is composed of the ratio of areas of Delaunay triangles. 

For a face sample, Sk, given its Voronoi tessellation, Vk, computed in the previous section, 

we can readily define the Delaunay triangulation of Lk [15]. The tessellation, Vk, consists of 

polygonal cells whose vertices are called Voronoi vertices. For a given Voronoi vertex, v ∈ 
ℝ2, the nearest neighbor set nb(Lk,li) of l ∈ Lk consists of the set of points in Lk that are 

closest to v. The Delaunay triangle for v consists of the triangle formed from the convex hull 

of the nearest neighbor set of Voronoi vertex v:

dt(v) = conv nb Lk, v (5)

We denote the set of triangles in the tessellation of Lk as Tk = {dt(v)} where v ∈ Vk. In 

general, the triangle edges in the Delaunay triangulation will vary somewhat across the face 

samples in our database due to the variation in landmark location for each Lk. To normalize 
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for such variations, we compute the Delaunay triangulation for one template face sample, 

Sk*. Hence we preserve the connectivity of the landmarks ∀k, however the location, shape 

and area of the Delaunay triangles vary from one face to the next because the triangle 

vertices depend on the locations of the landmarks.

We define additional candidate predictors for Sk as the ratio of the areas of any two such 

distinct Delaunay triangles of a face sample:

CPTv =
area dt va
area dt vb

where va,vb ∈ Vk, b > a, (6)

where area(.) is the area of the specified triangle, The number of ratios for every sample is 

C Vk* , 2 .

3. RESULTS

3.1. Evaluation Methodology

The approach advocated for cross-validation on the FG-Net database is a leave-one-person-

out (LOPO) testing strategy [2,16] We adopt this strategy and fold the data along the person 

dimension. To evaluate our approach, we compute three types of errors: test mean absolute 

error (test MAE), training mean absolute error (train MAE) and an estimated test error (est. 

test MAE). Test MAE is the mean absolute difference between the predicted face age and 

the actual ground truth face age for a sample that is not used to train. Train MAE error is the 

mean absolute difference between the predicted face age and the actual ground truth face age 

for a sample that is used to train. The est. test MAE is the estimate of test MAE using the 

training samples when those samples are out of bootstrap.

We rank the features used during training by computing, for each candidate predictor, the 

mean feature importance and then sort them in descending order of importance. We use the 

feature importance measure based on the increase in node impurity [14].

3.2. Experimental Results Using FG-Net Database

The FG-Net database [13] contains 710 face samples within the age range [0 – 20). These 

samples are from 81 different subjects. In addition to age, each face sample has been 

assigned 68 landmarks as shown in Fig. 1e. An example of the computed Voronoi 

tessellation and Delaunay triangulation for such landmarks is shown for one sample in Fig. 

2a and 2b respectively. We use the fast O(NlogN) optimal time quickhull algorithm [15] for 

the computation.

Table 1 shows the type and number of candidate predictors used to train the random forest.

Training random forest with the total predictor set described in Table 1 yielded a test MAE 

of 3.43 years and a training MAE of 0.99 years. In addition, over 81 folds, the est. test MAE 

had a minimum of 3.392 and maximum of 3.526 years as summarized in Table 2.
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The most important predictors for age regression found during our test are those shown in 

Fig 3.

Fig 4a shows that test MAE drops rapidly and stays low during training, indicating we have 

not overfit the learner.

4. DISCUSSION

Achieving age regression accuracy on test data of just 3.4 years is a promising sign for 

further experimentation. Research has shown that humans are able to predict age to within 

3.6 years on the full database of 1002 samples [5], and our method performs close to 

humans. Also our testing to date does not exploit appearance information, which is expected 

to bring further improvement.

One of the most potentially valuable results is that estimated test error from OOB training 

samples is quite reliable. The range of the estimated test MAE was 3.392 to 3.526 over 81 

folds. Hence the maximum deviation of the estimated test MAE on any given single fold 

from the actual test MAE computed over ALL folds is only 0.09 years. This means that by 

using the random forest, we obtain an accurate prediction of test error in one fold. This can 

result in a reduction of training time by a factor of Nfold−1 where Nfold is the number of 

cross validation folds. For large databases the savings can be substantial. For example, in the 

FG-Net database, 81 folds are performed for LOPO folding requiring ~8hrs on a 3 GHz 

Pentium, while one fold requires only ~10min, a substantial reduction in time.

The predictors that random forest ranks as most important appear to be the ones closely 

related to the growth of the face during human development. A few of the top ranking 

predictors are illustrated in Fig 4b. These mostly have to do with the elongating of the nose 

and the overall height of the face relative to eye separation which changes much more 

slowly. The advantage of the random forest is that it is fast to train, and gives insight into 

which features help predict the target.

5. CONCLUSIONS

This paper presents the application of the random forest for face age regression. The 

promising experimental results for subjects aged 0–20 years, show the effectiveness of the 

proposed method. Furthermore, RF has only two adjustable parameters (Ntrees and mtry) and 

we found that the results are insensitive to them. Another interesting observation is that the 

estimated test error (obtained during training) very well approximates the actual test error. In 

the future we plan to investigate (1) the combination of geometric and appearance features 

and (2) the extension to age estimation over all age ranges.
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Fig.1. 
FG-Net (a-d) age variation and (e) landmarks
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Fig. 2. 
(a) Voronoi cells and their vertices v (red) (b) Delaunay triangles and their vertices li (blue 

landmarks)
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Fig.3. 
Feature importance from increase in node purity
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Fig.4: 
(a) Test MAE as a function of # trees. (b) Location of most important features
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Table 1:

Candidate predictor (feature) set

Type of candidate predictor Size Count

CPL Inter Landmark Distances C(68,2) 2,778

CPV Ratios of Voronoi Cell Areas C(68,2) 2,778

CPT Ratios of Delaunay Triangle Areas C(116,2) 6,670

Total candidate predictor set 11,226
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Table 2:

Test and training errors

Type of error MAE in years % variance
explained

Test MAE over all folds 3.43 64.34%

Est. test MAE [3.392 to 3.526] [62.29% to 65.26%]

Training MAE 0.99 97.01%
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