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ABSTRACT

In this paper we present a new Bayesian methodology for the
restoration of blurred and noisy images. Bayesian methods rely on
image priors that encapsulate prior image knowledge and avoid the
ill-posedness of image restoration problems. We use a spatially vary-
ing image prior utilizing a Gamma-Normal hyperprior distribution
on the local precision parameters. This kind of hyperprior distri-
bution, which to our knowledge has not been used before in image
restoration, allows for the incorporation of information on local as
well as global image variability, models correlation of the local pre-
cision parameters and is a conjugate hyperprior to the image model
used in the paper. The proposed restoration technique is compared
with other image restoration approaches, demonstrating its improved
performance.

Index Terms— Image restoration, Variational methods, Bayes
procedures, Gamma-Normal distributions

1. INTRODUCTION

A standard formulation of the image degradation model is given in
lexicographic form by

y = Hx + n , (1)

where the P × 1 vectors x, y, and n represent, respectively, the
original image, the observed noisy and blurred image, and the white
Gaussian noise with independent elements of variance σ2

n = β−1,
and H represents the known blurring matrix. The images are as-
sumed to be of size m × n, with P = m × n. The restoration
problem considered here is to find an estimate of x from y and H
and some knowledge about n and possibly x.

Bayesian image restoration techniques are based on the intro-
duction of a prior image model on x whose aim is to encapsulate our
prior image knowledge and consequently to avoid the ill-posedness
of the image restoration problem. Image prior models like the ones
based on Simultaneous Auto-Regression (SAR) [1], Conditional
Auto-Regression (CAR) [1] or Total Variation (TV) [2] depend on
a global parameter which is related to the global variance of the
image model. However, for most images it is not realistic to assume
that the variance of the model is the same for the whole image and
consequently it should be adapted to its local characteristics.

One such spatially varying image prior model was defined re-
cently in [3]. This hierarchical model represents the local image
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activity and discontinuities with a continuous valued set of hidden
variables. These variables represent the local precision (inverse vari-
ance) of the spatial image derivatives.

In this paper we propose to extend the model of [3], improv-
ing the estimation of the precision variables. In [3], these variables
are assumed to be independent. This means that the strength of an
edge or feature at one pixel in the image is not related to that at
neighboring pixels, and large local restoration errors may result in
the presence of noise. In fact, we can do better by using our prior
knowledge that, in both smooth and edge regions, these precision
variables tend to be highly correlated. As we will see, this allows
for a larger degree of nonstationary without the occurrence of local
singularities.

To do this, we use a Gamma-Normal hyperprior distribution on
the local precision parameters. This kind of hyperprior distribution
[4, 5, 6], which as far as we know has not been used before in image
restoration, allows for the incorporation of information on local as
well as global image variability and is a conjugate hyperprior to the
image model used in the paper. The advantage of such a model over
the model in [3] is to not only enforce smoothness in smooth regions,
but to also impose our knowledge that where there are edges we
expect to find other edges correlated with these nearby.

The paper is organized as follows. In section 2 we discuss the
local image model as well as the degradation model and the hyper-
parameter model we are going to use. Then the inference, that is, the
estimation of the restored image and the parameters, is performed
in section 3. Experimental results are described in section 4 and,
finally, section 5 concludes the paper.

2. BAYESIAN MODELING

The Bayesian formulation of our image restoration problem requires
the definition of the joint distribution p(Ω,x,y) of the observation
y, the unknown image x, and the hyperparameters Ω (which obvi-
ously depend on the model used). Then, the posterior distribution of
the unknowns given the observed image p(Ω,x|y) has to be calcu-
lated and used to estimate the unknown image and hyperparameters.

Given the degradation model of Eq. (1), the distribution of the
observed image y given x is

p(y|x) ∝ βP/2 exp

[
−1

2
β ‖ y − Hx ‖2

]
, (2)

where we are considering that the noise parameter β is either known
or can be estimated from the available data. In the experimental
section we will propose a method for estimating it.

Following the approximation in [3] which extends the Condi-
tional Autoregressive (CAR) model (see [1]) to take into account

129978-1-4244-5654-3/09/$26.00 ©2009 IEEE ICIP 2009



α(i,i3)

α(i,i1)

α(i,i2)

α(i,i7) α(i,i8)α(i,i6)

α(i,i5)

α(i,i4)

x(i) x(i1)

x(i2)x(i3)x i( 4)

x(i5)

x(i6) x(i7) x(i8)

Precision pixels

Image pixels

Fig. 1. Image pixel and precision pixels notation.

local variability we write

p(x|α) ∝
P∏

i=1

4∏
l=1

α
1/8

(i,il) exp

{
−α(i,il)

2

(x(i) − x(il))2

8

}
, (3)

where α(i,il) controls the smoothness of the restoration between im-
age pixels i and il (see Fig. 1) and

α =
[
α(i,il) | i = 1, . . . , P, l = 1, . . . , 4

]
. (4)

Note that if α(i,il) = α,∀(i, il) we have the (global) CAR prior
model. The parameters α(i,il) are precision parameters since they
correspond to inverse of variances. Note that this amounts to intro-
ducing 4P parameters whose value has to be set or estimated.

We now proceed to define a hyperprior on the hypervector α
which aims to incorporate prior knowledge on the value of the pre-
cision parameters α(i,il) and, thus, effectively reduces the number
of parameters to be set. The chosen hyperprior should account for
local as well as global variability. A large part of the Bayesian liter-
ature is devoted to finding hyperprior distributions p(α) for which
p(α,x|y) can be calculated in a straightforward way or can be ap-
proximated. These are the so called conjugate priors [7]. Conjugate
priors have, as we will see later, the intuitive feature of allowing one
to begin with a certain functional form for the prior and end up with
a posterior of the same functional form, but with the parameters up-
dated by the sample information.

Taking the above considerations about conjugate priors into ac-
count, we propose the definition and use of the following distribution
on the hyperparameter vector α, termed the Gamma-Normal distri-
bution

p(α | λ, a, c) ∝
P∏

i=1

4∏
l=1

[α(i,il)]
a exp

[−cα(i,il)

]

× exp

⎡
⎣−λ

2

∑
(i,il)

∑
(i′,il′)

(
α(i,il) − α(i′,il′)

)2

Nil

⎤
⎦ , (5)

∀α(i,il) > 0, where λ > 0, c > 0, and a > 0, and (i, il) and (i′, il′)
are indices of neighboring precision pixels and Nil is the number of
neighboring precision pixels of pixel i in the direction l. Different
neighborhood systems can be defined but, in this paper, we use the
four nearest precision pixels to the precision pixel (i, il) in its same
direction (see Fig. 2).

Let us before proceeding analyze in some depth this distribution.
Gamma-Normal distributions extend the definition of the Rectified
Gaussian distribution [8], a modification of the standard Gaussian
distribution in which the variables are constrained to be positive, by
considering the distribution in Eq. (5) as the product of a Rectified
Gaussian distribution

p1(α|λ) ∝ exp

⎡
⎣−λ

2

∑
(i,il)

∑
(i′,il′)

(
α(i,il) − α(i′,il′)

)2

Nil

⎤
⎦ , (6)
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Fig. 2. Examples of neighborhood system of a precision pixels (in
bold). (a) for α(i,i1); (b) for α(i,i2).

∀α(i,il) > 0, and P independent Gamma distributions

p2(α|a, c) ∝
p∏

i=1

4∏
l=1

[α(i,il)]
a exp

[−cα(i,il)

]
(7)

and consequently its domain is α > 0.

From its definition we have

p(α | λ, a, c) ∝ p1(α|λ)p2(α|a, c) (8)

with ∫
α>0

p(α | λ, a, c)dα = 1. (9)

That is, p(α | λ, a, c) is not an improper distribution.

Furthermore, given the neighboring precision pixels of a given
one, the mode of the corresponding conditional distribution from
p1(α|λ) is the mean of the neighboring precision pixels which we
term α(i,il), while for a given precision pixel the mode of its distri-
bution from p2(α|a, c) is a/c. This indicates as we will show more
formally later that this prior distribution can be used to model fidelity
to a (global) given value (a/c) as well as to the (local) mean values
of neighboring pixels.

The new hyperprior model defines a positive-constrained Markov
random field (MRF) over the precision variables, with the amount
of correlation controlled by λ. Thus, even though the local image
differences (x(i) − x(il)) are uncorrelated, which aids tractability,
the continuity of edge features is maintained through the hidden
variables α. The advantage of this model is to ensure that the val-
ues of α(i,il) remain large in smooth regions, suppressing noise,
and do not drop unboundedly at sharp features, but take on locally
consistent values.

3. BAYESIAN INFERENCE

The Bayesian paradigm dictates that inference on (α,x) should be
based on

p(α,x|y) =
p(α,x,y)

p(y)
=

p(α)p(x|α)p(y|x)

p(y)
, (10)

where p(α), p(x|α) and p(y|x) have been defined in Eqs. (5), (3),
(2), respectively.

We can not calculate this posterior distribution in closed form
and therefore we apply variational methods to approximate it by the
distribution q(α,x). The variational criterion used to find q(α,x)
is the minimization of the Kullback-Leibler divergence, given by [9,
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10]

C(q(α,x)||p(α,x|y)) =

∫
α,x

q(α,x) log

(
q(α,x)

p(α,x|y)

)
dαdx

=

∫
α,x

q(α,x) log

(
q(α,x)

p(α,x,y)

)
dαdx + const, (11)

which is always non negative and equal to zero only when q(α,x)
and p(α,x|y) coincide.

We will approximate p(α,x|y) by the distribution q(α,x) =
zD (α)zD (x), where we assume that both zD (α) and zD (x) are
degenerate distributions (they take one value with probability one
and the rest with probability zero). As we will now see, the corre-
sponding algorithm is equivalent to maximizing p(α,x,y) alterna-
tively in the hyperparameters and image. In other words, the estima-
tion procedure is an iterated conditional mode (ICM) algorithm [11].
The corresponding optimization algorithm is as follows

Algorithm 1 Local image restoration algorithm
Given α1, an initial estimate of the hyperparameter precision vector
where the distribution zD (α) is degenerate,

for k = 1, 2, . . . until a stopping criterion is met:

1. Find xk, an estimate of the image where the distribution
zD (x) is degenerate by solving

xk = arg max
x

p(αk,x,y). (12)

2. Find αk+1, an estimate of the hyperparameter precision vec-
tor where the distribution zD (α) is degenerate by solving

αk+1 = arg max
α

p(α,xk,y). (13)

To explicitly calculate xk we have to solve

xk=arg min
x

β̂ ‖y−Hx‖2 +

P∑
i=1

4∑
l=1

αk
(i,il)

(x(i) − x(il))2

8
, (14)

which can be solved, for instance, by Gradient Descent or Conjugate
Gradient methods.

Let us now examine the calculation of αk+1. Given a precision
pixel position (i, il), differentiating − log p(α,xk,y) with respect
to α(i,il) we obtain

− ∂ log p(α,xk,y)

∂α(i,il)

= λ(α(i,il) − ᾱ(i,il)) − a

α(i,il)

−1

8

1

α(i,il)

+ c +
1

8

(xk(i) − xk(il))2

2
, (15)

where ᾱ(i,il) denotes the mean of the neighboring precision pixels
of α(i,il). Setting now this derivative equal to zero and multiplying
by α(i,il) we obtain

α(i,il) ×
[
λα(i,il) + c +

1

8

(xk(i) − xk(il))2

2

]

= λα(i,il)ᾱ(i,il) + a +
1

8
, (16)

or

α(i,il) = μxk,α(i, il)ᾱ(i,il) + (1 − μxk,α(i, il))

×
[
ψxk (i, il)

a

c
+ (1 − ψxk (i, il))

1
(xk(i)−xk(il))2

2

]
, (17)

noise method method proposed
variance (SNR) in [12] in [3] method

0.56 (45dB) 5.13dB 7.53dB 8.03dB
5.6 (35dB) 3.41dB 5.09dB 5.45dB

Table 1. ISNR for different restorations.

where

μxk,α(i, il) =
λα(i,il)[

λα(i,il) + c + 1
8

(xk(i)−xk(il))2

2

] , (18)

and
ψxk (i, il) =

c

c + 1
8

(xk(i)−xk(il))2

2

. (19)

Equation (17) suggests an iterative process where we obtain the new
estimation of α(i,il), αk+1

(i,il), in the left hand side using the previous

estimation, αk
(i,il), in the right hand side. This is a very interest-

ing equation since it tells us that αk+1
(i,il) is a linear convex combina-

tion of the mean of its neighboring precision pixels ᾱk
(i,il), the mode

of the gamma distribution defining the Gamma-Normal distribution
a/c and the maximum likelihood estimate of α(i,il) from p(xk|α),

that is, 1/[(xk(i) − xk(il))2/2].

4. EXPERIMENTAL RESULTS

A number of experiments have been performed with the proposed
algorithm. Here we report results on the cameraman image. The
original image was blurred with an uniform 7 × 7 blur and Gaus-
sian noise of variance σ2

n = 5.6 and σ2
n = 0.56 was added re-

sulting in two degraded images with a SNR of 35dB and 45dB,
respectively. The criterion ‖ xk+1 − xk ‖2 / ‖ xk ‖2≤ 10−6

was used for terminating the iteration. In all experiments, no more
than 21 iterations were needed for the algorithm to converge. The
performance of the restoration algorithm was evaluated by measur-
ing the improvement in signal to noise ratio defined by ISNR =
10 log10

[‖ x − x̂ ‖2/‖ x − y ‖2
]
, where x̂ is the restored image.

In order to run the proposed method, a set of parameters need to
be set. More specifically, we need to provide values for β, a, c and
λ. Since the proposed model is derived from the global CAR image
model, the method using the CAR image model in [12] using a flat
hyperprior on the hyperparameters was used for estimating the noise
parameter β. This method amounts to estimating the restored image
by taking the MAP of the posterior distribution while the parameters
are estimated by maximum likelihood, which provides a very precise
estimation for the noise parameter β. This method, also provides
a value for the global image model parameter α that can be used
as an estimate for a/c in the proposed model. Initially, we used
α(i,il) = α,∀i, il. Similarly to [3], we used a = 0.01 and c =
a/α. This means that the values of α should be quite similar to
the global image parameter α except of the objects boundaries. To
enforce continuity of the boundaries we chose λ = 1e5. We note
that choosing λ = 0 corresponds to the method described in [3].

We compared the proposed method with the method using a
CAR image model in [12] and the method in [3]. Results are summa-
rized in Table 1. From this table, it is clear that the proposed method
provides much better results than the method in [12], resulting in
an increase of the ISNR for up to 2.9dB, and better results than the
method in [3]. To visually illustrate the performance of the method,
the experiment just described in the case of σ2

n = 0.56 is shown in
Fig. 3, comparing the three methods.

From the images it is clear that the proposed method provides
a better restoration with crisper edges, no noticeable ringing and
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Fig. 3. a) Original cameraman image; (b) Degraded image with
7 × 7 uniform blur and additive noise of variance 0.56; (c) Restora-
tion using the global image model based method in [12], ISNR =
5.16dB; (d) Restoration using the method in [3], ISNR = 7.53dB;
(e) Restoration using the proposed method, ISNR = 8.03dB; (f)
Detail of α in the direction l = 4 for the method in [3] (left) and the
proposed method (right).

much less noise artifacts than the method in [12]. Compared to the
method in [3] we can see that enforcing continuity removes the over-
smoothing into piecewise constant regions in smooth areas (such as
the face), better defines faint edges (e.g., in the buildings), and also
ameliorates the presence of artifacts we term “hot” and “cold” pixels.
These are isolated black or white pixels that appear in the restora-
tions, uncorrelated with their neighbors, at locations where α(i,il) is
estimated uncharacteristically low. The appearance of these pixels
can be self-reinforcing in the ICM procedure; a hot or cold pixel will
cause a large local variance (small α(i,il)), which can then increase
the hot or cold pixels’ visibility. Using a larger value of λ means

that the process is more stable as neighbors of each α(i,il) are taken
into account. We think that these pixels can be removed by a bet-
ter selection of the parameters and we are working in that direction.
Figure 3f illustrates the difference in the precision parameters map.
Clearly, the proposed method (right) obtains a much less noisy es-
timate and better continuity of the objects edges than the method in
[3] (left), due to the enforcement of the correlation between preci-
sion pixels. The proposed algorithm took 280 seconds to run in a
Pentium IV 3400, a time similar to the one employed by the method
in [3]. The method in [12] took only 1.9 seconds.

5. CONCLUSIONS

In this paper we have presented a new Bayesian restoration method
which takes into accounts the local features in the image by the mean
of the prior distribution. This prior distribution depends on a large
set of parameters and a Gamma-Normal distribution, that allows for
the incorporation of information on local as well as global image
variability, is used as hyperprior on them, effectively reducing the
number of parameters that need to be set. The proposed restora-
tion technique has been compared with other image restoration ap-
proaches and its performance has been experimentally demonstrated.
The proposed method provides better visual and numerical results
and ameliorates the presence of hot and cold pixels. We think those
pixels can be completely removed by a better selection of the param-
eters and we are currently working on this problem.
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