Abstract:
This paper presents a study aimed to the realization of a novel multiresolution registration framework. The transformation function is computed iteratively as a compositi...Show MoreMetadata
Abstract:
This paper presents a study aimed to the realization of a novel multiresolution registration framework. The transformation function is computed iteratively as a composition of local deformations determined by the maximization of mutual information. At each iteration, local transformations are joint together using fuzzy kernel regression. This technique represents the core of the method and it's formally described from a probabilistic perspective. It avoids blocking artifacts and allows to keep the final deformation spatially congruent and smooth. Both qualitative and quantitative experimental results show that this approach is equally effective for registering datasets acquired from both single and multiple diagnostic modalities.
Date of Conference: 07-10 November 2009
Date Added to IEEE Xplore: 17 February 2010
ISBN Information: