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ABSTRACT

In this paper, we introduce a new Synthetic Aperture Radar (SAR)
imaging modality that provides a high resolution map of the spa-
tial distribution of targets and terrain based on a significant re-
duction in the number of transmitted and/or received electromag-
netic waveforms. This new imaging scheme, which requires no
new hardware components, allows the aperture to be compressed
and presents many important applications and advantages among
which include resolving ambiguities, strong resistance to coun-
termesasures and interception, and reduced on-board storage con-
straints.

Index Terms— compressed sensing, SAR

1. INTRODUCTION

SAR is a radar imaging technology that is capable of producing
high resolution images of the stationary surface targets and terrain.
The main advantages of SAR are its ability to operate at night and
in all weather conditions, hence overcoming limitations of both
optical and infrared systems. There are four common modes of
SAR: scan, stripmap, spotlight and inverse SAR (ISAR). In this
paper, we will mainly focus on the spotlight mode SAR and ISAR.
In spotlight mode SAR, the radar sensor steers its antenna beam
to continuously illuminate the terrain patch being imaged. It can
provide higher resolution than the stripmap and scan mode SAR
because it maps a scene at multiple viewing angles during a single
pass [1]. In ISAR, the radar is stationary and the target is moving.
The angular motion of the target with respect to the radar can be
used to form an image of the target. Differential Doppler shifts of
adjacent scatters on a target are observed and the target’s reflectiv-
ity function is obtained through the Doppler frequency spectrum
[2].

Since a SAR image is a map of the spatial distribution of the
reflectivity function of stationary targets and terrain, many SAR
images can be sparse or compressible in some representation such
as those from a wavelet or a complex wavelet transform. The re-
cently introduced theory of compressed sensing (CS) states that
it is possible to recover such sparse images from a small number
of random measurements provided that the undersampling results
in noise like artifacts in the transform domain and an appropriate
nonlinear recovery scheme is used [3, 4].

In this paper, we introduce a new SAR image formation algo-
rithm based on the theory of CS that reduces the number of trans-
mitted and/or received waveforms. We will demonstrate that if the
SAR image is assumed to be sparse in some transform domain,
then one can reconstruct a good estimate of the reflectivity profile

using this new image formation algorithm that relies on using a far
fewer number of waveforms than the conventional systems do and
requires no changes to a radar system hardware to work.

Our approach is in contrast to other compressive radar re-
lated algorithms that have only considered using CS as part of the
analog-to-information (A2I) conversion [5] or transmitting spe-
cially designed waveforms [6]. It is also the case, that the radar
community has considered similar concepts that we are present-
ing such as that provided in [7]. Yet our method enhances some
of these suggestions and provides a proper framework along with
general reconstruction techniques. By using concepts provided by
CS-theory we are able to propose a reliable imaging system that
should pave the way for many new applications that are highly de-
sirable. Also, very recently CS ideas were applied for SAR image
formation in [8].

2. SAR PHASE HISTORIES

In this section, we give a brief description of SAR [1, 9, 10, 11, 12].
Figure 1 shows a simple diagram of spotlight mode SAR and how
received data are placed in a 2D signal array. In SAR, motion of
the antenna is used to synthesize a long antenna. As the radar plat-
form advances along its path at constant velocity, pulses are trans-
mitted and received by the radar. Pulses are transmitted at an uni-
form pulse repetition interval (PRI), which is defined as 1/PRF ,
where PRF is the pulse repetition frequency. The reflected signal
at any instant can be modelled as a convolution of the pulse wave-
form with the ground reflectivity function [9, 11].

It has been shown that, if the echo signal is mixed with the ref-
erence chirp signal and low-pass filtered, the resulting signal can
be viewed as an approximate Fourier transform of the projection
of the ground patch [11]. Consequently, the preprocessed SAR
histories define a set of samples in the Fourier space (k-space) of
the scene on a polar wedge [1, 11, 12]. A reflectivity function (i.e.
SAR image) is recovered by appropriately interpolating these po-
lar data to a Cartesian grid and taking a two dimensional inverse
Fourier transform. This algorithm is commanly known as the Polar
Format Algorithm (PFA) [1].

The two dimensional image formed is interpreted in the di-
mensions of range and cross-range or azimuth. The range is the
direction of signal propagation and the cross-range is the direction
parallel to the flight path. Sometimes the range and the cross-range
samples are referred to as the fast-time and the slow-time samples,
respectively.

2141978-1-4244-5654-3/09/$26.00 ©2009 IEEE ICIP 2009



Figure 1: Spotlight SAR data collection in 2D.

3. COMPRESSED SENSING

A new framework known as compressed sensing, enables the re-
construction of sparse or compressible signals from a small set of
nonadaptive, linear measurements. If properly chosen, the number
of measurements can be much smaller than the number of Nyquist
rate samples [3, 4]. In this section, we give a brief introduction to
compressed sensing.

Suppose x ∈ C
N is K-sparse in a basis or more generally

a frame Ψ, so that x = Ψx0, with ‖ x0 ‖0= K � N, where
‖ . ‖0 returns the number of nonzero elements. In the case when
x is compressible in Ψ, it can be well approximated by the best
K-term representation. Consider a randomM × N measurement
matrix Φ with M < N and assume that M linear measurements
are made such that y = Φx = ΦΨx0 = Θx0. According to
the theory of CS, when the matrix Θ has the Restricted Isometry
Property (RIP) [20], it is possible to reconstruct x from a set of
M = O(K log(N

K
)) linear measurements. A matrix Θ is said to

satisfy the RIP of orderK with constants δ = δK ∈ (0, 1) if

(1 − δK) ‖ v ‖2

2≤‖ Θv ‖2

2≤ (1 + δK) ‖ v ‖2

2 (1)

for any v such that ‖ v ‖0≤ K. A related condition requires that
the rows of Φ cannot sparsely represent the columns of Ψ and
vice versa. In the case when Φ is generated from iid Gaussian
distribution and Ψ is a sparsifying basis, then Θ satisfies the RIP
with high probability. Among many other ensembles of random
matrices that satisfy the RIP, a partial Fourier matrix where M
rows of theN×N Fourier matrix selected at random are included.

When Θ has the RIP, it is possible to reconstruct x via its co-
efficients x0, by solving the following �1 minimization problem
[3, 4]

x̂0 = arg min
x′

0
∈RN

‖ x′

0 ‖1 subject to y = ΦΨx′

0. (2)

The optimization problem (2) is often known as Basis Pursuit (BP)
[13]. In the case when there are noisy observations, Basis Pursuit
De-Noising (BPDN) can be used to estimate the original image.

3.1. Compressive Sampling for SAR

Design of a CS undersampling scheme for SAR entails the selec-
tion of phase histories such that it satisfies (1). Some of the re-
sults about CS are based on the fact that the Fourier samples are
obtained randomly. However, sampling a truly random subset of
the phase histories in SAR is usually impractical for existing hard-
ware. In this section, we consider two compressed sensing k-space
undersampling schemes for SAR. Since, the PRF essentially deter-
mines the slowtime-sampling rate, our CS undersampling schemes
are based on modifying the PRF of the radar. Implementation of
such undersampling schemes is very simple and requires a mi-
nor change to the PRF scheduling of the radar. More analysis on
the aliasing artifacts introduce by these undersampling schemes in
terms of the point spread function (PSF) will be discussed else-
where (see [14] and [15] for more details).

Random slow-time undersampling: As discussed earlier, as
the sensor advances along its path, pulses are transmitted and re-
ceived by the radar (see Figure 1). The pulses are transmitted at
every PRI = 1

PRF
. Undersampling methods applying regular

grid produce regularly spaced strong aliases. Random placement
of PRI can break up the periodicity of the aliasing artifacts and can
convert strong aliases to random noise like artifacts [16, 17]. For
this reason, instead of transmitting pulses at every PRI, we pro-
pose to transmit a few pulses at a random PRI, which amounts to
undersampling the 2D signal along the slow-time axis randomly.

Jittered slow-time undersampling: Jittered undersampling is
based on a regular undersampling which is perturbed slightly by
random noise. The effect of jitter in one dimension was analyzed
by Balakrishnan in [18]. He analyzed time jitter in which the
nth sample is jittered by an amount ζn so that it occurs at time
nP + ζn, where P is the sampling period. He reported that if the
ζn are uncorrelated then the following happens: high frequencies
are attenuated, the energy lost to the attenuation appears as uni-
form noise, and the basic structure of the spectrum does not change
[16, 17, 18]. Furthermore, in [19] it was shown that additive ran-
dom jitter can eliminate aliasing completely. Jittered sampling in
2D was generalized and applied in computer graphics in [16, 17].
Also, Hennenfent and Herrmann in [15] have successfully applied
2D jittered undersampling in the context of CS for seismic data
processing. Inspired by the properties of the jittered sampling, we
propose to apply jitter undersampling in slow-time as well.

4. SAR USING CS

Given the partial Fourier measurements of the reflectivity map to
be imaged, in this section, we show how CS can be used to recon-
struct the SAR image.

Let σ ∈ C
l×l be the reflectivity map to be imaged. Let Ω

be some chosen set of frequencies of size |Ω| = M, with M �
l2, and FΩ : C

l×l → C
M denote the partial Fourier transform

operator restricted to Ω. Let S denote the collection of 2D phase
histories and S̃ = FΩρ ∈ C

M represent the collection of phase
histories restricted to Ω (i.e. partial Fourier measurements of the
reflectivity function ρ obtained by incorporating one of the slow-
time undersampling schemes discussed above). Assume that ρ has
a sparse representation (or is compressible) in some basis Ψ, so
that ρ = Ψv. Furthermore, assume that we are given the partial
k-space noisy observations. Then, the reflectivity map ρ can be
recovered via v by solving the following �1 minimization problem

vrec = arg min
v′

‖ v′ ‖1 s. t. ‖ S̃ − FΩΨv′ ‖2≤ ε, (3)
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where ε is a noise statistic that controls the fidelity of the recon-
struction [3, 4, 20]. It was shown in [20], that the solution to (3)
will recover the unknown sparse reflectivity map with an error pro-
portional to the noise level. That is, ‖ v−vrec ‖2≤ Cε, where the
constant C depends on the restricted isometry constant. Note that
the operator, FΩ, can be a non-uniform Fourier transform operator
[21, 22]. Implementation of such a scheme requires a reformula-
tion that includes an operator that maps the phase history data into
the image domain [12].

5. SAR AND ISAR EXAMPLES

In this section, we demonstrate the performance and applicability
of our compressive imaging algorithm on synthetic and real SAR
data. In the first example, we used four point targets to gener-
ate the phase histories. We used the following parameters in our
simulation: center frequency= 3.80 × 109 Hz, synthetic aper-
ture length= 102 m, bandwidth= 1.35 × 108Hz, A/D complex
sampling rate= 1.85 × 108 Hz, and transmitted pulse length=
1 × 10−6. Figure 2(a) shows the reconstruction of the SAR im-
age from the full simulated data using the PFA [1]. In Figure 2(b),
we show the phase histories obtained after applying the random
slow-time undersampling. Only 30% of the data was used. Fig-
ure 2(c), shows the traditional reconstruction from the compres-
sive measurements by the PFA, which fails to reconstruct the im-
age. Figure 2(d) shows the reconstructed image using our pro-
posed method. We choose Ψ to be the identity matrix for this
example. Our reconstruction used the spectral projected gradient
(SPGL1) algorithm [23]. As can be seen from Figure 2(d), that
we were able to image the reflectivity profile of the point targets
as good as PFA did from the full measurement data. Furthermore,
we use the Peak Sidelobe Ratio (PSR) and the Integrated Sidelobe
Ratio (ISLR) as measures of performance to evaluate the recon-
structed point targets. The PSR determines the difference between
the mainlobe and the most prominent sidelobe. The ISLR mea-
sures the ratio of all energy in the mainlobe to the total energy in
all the sidelobes [1].

Table 1: PSR and ISLR in dB
Original CS
PSR ISLR PSR ISLR

Range -29.64 -23.31 -29.63 -23.33
Cross-range -35.5 -28.29 -34.90 -27.94

We used a point target located at the top in the image for com-
parison. Since the reconstructed point response is a 2D entity, we
used principle axis cuts namely the range-cut and the cross-range-
cut for the analysis. We will refer to the range-cut and the corss-
range-cut as the range impulse response (RIR) and the cross-range
impulse response (CRIR), respectively. There is no degradation in
PSR and ISLR for the RIR. However, there is a minor degradation
in the CRIR due to the fact that our 2D undersampling scheme is
along the cross-range axis.

In the second experiment, we used ISAR data collected on
a SAAB 9000 car using System Planning Corporation’s Mark V
radar1. We reconstructed the image after 60% jittered slow-time
undersampling was applied to the data. As can be seen from Fig-
ure 3, the reconstructed image from these compressed measure-
ments is identical to the one reconstructed from the full measure-

1specifications of the radar can be found at www.sysplan.com/Radar
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Figure 2: Point targets example. (a) Traditional PFA based re-
construction from the full simulated data. (b) Random slow-time
undersampled phase histories. (c) Reconstructed by the PFA from
the compressive measurements. (d) Reconstructed image using
our method.

ments. Figure 3(b), shows how the traditional reconstruction fails
to recover the ISAR image.

In [4, 3], a theoretical bound on the number of Fourier sam-
ples that need to be measured for a good reconstruction has been
derived. However, it has been observed by many researchers [14,
20, 24, 25], that in practice Fourier samples in the order of two
to five times the number of sparse coefficients suffice for a good
reconstruction. Our experiments also support this claim.

6. APPLICATIONS

The idea of transmitting waveforms at a non-uniform PRI for SAR
has been suggested before [7]. This method, however, suffers from
the smearing of the image in the cross-range dimension due to
the randomness of the PRI. By solving the basis pursuit denois-
ing problem (i.e (3)), we are able to not only reconstruct the image
as good as some of the traditional SAR reconstruction methods do
from the full data but even at a lower sampling rate. Our method
of compressing the synthetic aperture offers many advantages:

• Since, irregularly transmitted waveforms are much more
harder to intercept, our compressive aperture method offers
strong countermeasures resistance [7, 26, 27].

• Many methods for resolving ambiguities have been sug-
gested. Among them include pulse tagging, PRF switching,
and methods based on the Chinese remainder theorem. PRF
switching is a simple extension of PRF jittering. Thus, our
compressive radar can also be useful in resolving ambigui-
ties [28].

• In many SAR systems, radar data is directly stored in a
memory for later transmission to the ground. Our com-
pressive SAR has the potential to significantly reduce the
amount of data to be stored and transmitted [9, 29].
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Figure 3: SAAB car ISAR example. (a) Traditional reconstruction with the full data. (b) Traditional reconstruction with the partial data.
(c) Reconstructed image using our proposed method from 60% slow-time undersampled data.

7. CONCLUSION

We have managed to utilize CS-theory and demonstrated that it
is possible to compress the synthetic aperture for radar imaging.
Most importantly, not only can our suggested undersampling be
used in novel collection schemes to produce high quality images
but many new applications such as signals intelligence, resolving
ambiguities, and reduced storage constraints are possible because
of it.
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mono-static and multi-static SAR, ” Proc. SPIE, vol. 7337, 2009.

[9] I. G. Cumming, and F. H. Wong, Digital processing of synthetic
aperture radar data. Norwood, MA, Artech House, 2005.

[10] K. Tomiyasu, “Tutorial review of Synthetic-Aperture Radar (SAR)
with applications to imaging of the ocean surface, ” Proc. of the
IEEE, vol. 66, no. 5, pp. 563–583 , May 1978.

[11] D. C. Munson,Jr., J. D. O’Brien, and W. K. Jenkins, “A tomo-
graphic formulation of spotlight-mode synthetic aperture radar, ”
Proc. IEEE, vol. PROC-71, pp. 917–925 , Aug. 1983.
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