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ABSTRACT

We present a multi-view three dimensional intelligent
surveillance system. We use a multi-agent framework to
identify the behaviors of individuals in the scene. Detection
and interpretation are performed completely in 3D space. A
moving train coach is monitored by eight fish-eye cameras.
Segmentation masks extracted from the undistorted images
are fed to a distributed 3D reconstruction algorithm produc-
ing an octree-based description of the volume at each frame.
Voxel-based algorithms extract connected-regions and their
descriptions from consecutive models. The set of regions is
mapped to a set of agents. We achieve dynamically consistent
high-level interpretations by combining probabilistic models
of human behaviors and intelligent reasoning.

Index Terms— Fish-eye, 3D-reconstruction, volumetric,
event-detection, HMM-DBN

1. INTRODUCTION

In order to enforce the conformity of people behaviour with
society rules, state operators and private companies are in-
creasing the number and size of areas to monitor.

Nowadays, recorded sequences are mostly used in a pos-
teriori basis to arrest and convict people. Technical and
economical constraints forbid the online monitoring of each
video sequence by a human operator. Our society would
benefit of robust intelligent surveillance systems able to raise
alarms to human operators in real time. Then, each opera-
tor may handle a group of surveillance systems and react to
raised alarms while the action is taking place.

Even with the increase in computer power, image acqui-
sition, transmission and analysis is still expensive in terms of
equipment. Therefore, the number of cameras is restricted to
the minimum by using fish eye lenses. Their wide angle of
view maximizes the volume seen by each camera at the cost
of spatial resolution.

Our goal is to design a multi-agent framework to identify
the behaviors of individuals in the scene, where detection and
interpretation are performed completely in 3D space. Until
now most of the surveillance work has been done using 2D
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techniques [1], in which the main problems are to resolve oc-
clusions and tracking of multiple people.

2. SYSTEM DESCRIPTION

Eight fish-eye cameras monitor the volume of interest. Seg-
mentation masks extracted from the undistorted images are
fed to a distributed 3D reconstruction algorithm producing an
octree-based description of the volume at each frame. Voxel-
based algorithms extract connected-regions and related fea-
tures from consecutive models, which are the inputs to an in-
telligent event detection system.
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Fig. 1. General overview of the system

2.1. Fish-eye acquisition and calibration

Our 3D reconstruction system computes the projection of
each voxel into each image. The current implementation uses
a pinhole projection model:

m̃ = PX̃w (1)

where X̃w and m̃ are respectively the homogeneous world
and image coordinates of a 3D point, and P = A(R|T ) is
the camera projection matrix which consists of intrinsic ma-
trix A and extrinsic matrix (R|T ). Since we use fish-eye
lenses, which causes strong distortions, computation of P

is not straightforward. Our calibration is performed in two
steps.
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The first step corrects image distortion by projecting im-
ages from the omnidirectional camera model to the pinhole
camera model. This 2D to 2D projection provides intrinsic
pinhole camera parameters. We use D.Scaramuzza algorithm
to calibrate Omni-directional cameras [2]. It provides effi-
cient results for our fisheye lenses as shown in figure 2. We
observe that distortion is corrected and that the curved chess
pattern is straightened.

Fig. 2. Left and Middle: Example of undistortion effects
Right: Extrinsic calibration target inside train

The second calibration step is the computation of extrin-
sic parameters. It uses a cubic object with chess painting on
its faces as shown in figure 2. This object is designed to be
visible from every camera, so that one can define a common
3D coordinate system shared by all cameras. We use a basic
least-square method.

2.2. Distributed volumetric 3D reconstruction

The 3D reconstruction algorithm has been fully described in
[3]. It uses a distributed and scalable volumetric architecture
based on an efficient exploitation of inter-frame redundancy
and an efficient merging of partial models. The architecture
is composed of acquisition nodes reconstructing partial mod-
els from multiple views and of a master node merging partial
models. The master node updates local copies of the partial
models with non-redundant information from the acquisition
nodes. Then it merges the partial models to produce the volu-
metric description of the scene. Each voxel is described by a
single feature coding visibility, occupancy and subdivision of
space. By adding visibility to the voxel description, we allow
each camera to see only part of the volume of interest. We
achieve fifteen reconstructions per second and less than 130
ms latency with eight cameras and only twelve cores.

We use a post-filtering step to remove noise due to visi-
bility [3]. Our algorithm computes connected regions, their
size and their visibility. Each region is a group of non-outside
voxels for which there is a six-neighbourhood path between
any two voxels composed of voxels of the region. The size of
a region is the number of voxels composing it. The visibility
of a region is the maximum number of partial models seeing
a voxel of the region.

Classical visual hull implementations are based on the hy-
pothesis that the target is entirely visible by all the cameras.
Our hypothesis is that the target is seen by the highest number
of partial models. We sort connected regions by their visibil-
ity and size, and keep the most visible ones as long as their

size is above a threshold. The maximum number of regions
kept is a configuration parameter. Our filter also erases con-
nected regions that are seen by a single partial model. Our
system ensures that a subject is correctly modeled even if
different body parts are seen by different subset of cameras
as long as the visible parts in each camera are correctly seg-
mented.

The system had to be adapted in order to use the seg-
mented undistorted fish eye images as input. As seen in fig-
ure 2, the undistorted images present regions with undefined
pixel values near the borders. These regions are set to black
by default. The segmentation algorithm interprets them as
background. Voxel projecting onto those regions are erased
by the Visual Hull. In order to prevent this, we define voxels
projecting entirely inside an undefined region as invisible by
the corresponding camera. Other cameras will help us decide
if these voxels should belong or not to the model.

2.3. Voxel-based feature extraction

We extract spatio-temporal features out of the reconstructed
models in order to drive the event detection system. The pre-
cision of the extracted information depends on the quality of
the reconstructed models. Our system computes upper ap-
proximations of true shapes from the voxel-based reconstruc-
tions. Their quality depends on numerous factors including
the number of cameras, their resolution, the octree resolution,
the quality of the segmentation algorithm and the size of the
volume of interest.

We compute the centre of gravity cgj(t) = (cgj(t)x, cgj(t)y,

cgj(t)z)
T and the axis-aligned minimal bounding box BBj(t)

for each connected region Rj(t). Consequently, time deriva-
tive of these parameters are computed; the velocity of the cen-

ter of gravity vj(t) =
d

dt
cgj(t) = (vj(t)x, vj(t)y, vj(t)z)

T

and the variation in size along each axis ΔBBj(t) of the
minimal bounding box. Axis x and z are horizontal, and axis
y is vertical to the ground in our system. These parameters
are computed by a single traversal of the volumetric scene.
They consume almost no CPU time.

Complex features can be also extracted from the sequence
of volumetric models, e.g. Fourier descriptors [4] , 3D shape
contexts [5] or motion capture data [6]. If the feature extrac-
tion is too complex for the master, our distributed architecture
exploiting inter-frame redundancy allows a quick transfer of
the reconstructed models towards another cluster.

2.4. Behaviour analysis

Behaviour understanding involves the analysis and recog-
nition of motion patterns, and the production of high-level
description of actions and interactions. In this section we
develop a compositional analysis of individual behaviour
by combining probabilistic models of human behaviors and
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intelligent reasoning to achieve dynamically consistent high-
level interpretations.

2.4.1. Multi-agent framework

We propose a multi-agent system, where the concept of agent
is used to represent each tracked person. The concept of agent
Agi(t) is used to represent the extracted features EFi(t) of a
person i and his inferred action Ai(t) at time t.

EFi(t) =
(
cgj(t)T ,BBj(t)T ,vj(t)T ,ΔBBj(t)T

)T

where,

Ai(t) ∈ SA = {STAND, WALK, RUN, SIT DOWN,

GET UP, SEAT, DUCK, FALL DOWN,

GO DOWN, LIE, BANG}

The features are directly transferred from regions to agent
when there is a clear one to one correspondence between re-
gions and agents. This correspondence is established by com-
paring the features of agents at time t− 1 with the features of
the regions extracted at time t. This rule allows the system to
create a new agent when a person enters the monitoring vol-
ume, to keep track of the person and to delete the agent when
the person leaves.

A connected region may correspond to several agents if
their silhouettes intersect in all the cameras in which they are
visible (e.g. body contact). The system can distinguish agents
being lost and temporally inconsistent by referring to their
eventual status LEAVING or ENTERING the monitoring vol-
ume after computing a basic correlation. The new features of
those agents are estimated from those at the time t − 1 and
from those of the corresponding region at the time t.

2.4.2. Action inference

Many research in individual behaviour recognition focus on
a hierarchical structure to map features to high level actions.
This decomposition is generally not deterministic, as can be
stated from the many approaches proposed in literature using
different statistical [7][8] or rule-based models [9].

Probabilistic graphical models as Bayesian networks are a
widely used solution to approach this problem as they allow a
more sophisticated analysis of data with spatio-temporal vari-
ability. They offer a good trade-off between system complex-
ity and performance while providing a good framework for
coping with small training data sets and the addition of novel
behaviours to extend the system.

We have pursued a classic Hidden Markov Model dy-
namic Bayesian network (HMM-DBN) [10] that includes
both prior knowledge of each action Pr(action) and features
EFi(t), to probabilistically represent and infer the action
Ai(t) of individual agents and integrate these in time. The

conditional probability distributions of the observations given
an action Pr(EFi(t)|Ai(t)) are learnt from a set of annotated
training sequences. This parameter learning is reinforced by
a hierarchical analysis of the relational constraints between
agent parameters and defined actions. The following is our
DBN structure at time t.

Action

(
vj(t)x

vj(t)z)

)
vj(t)y State ΔBBj(t)

(
cgi(t)x

cgi(t)z

)
cgi(t)y

Fig. 3. DBN structure

Thus, some middle level states are created by grouping
semantically equivalent actions to determine which computer
vision features have stronger causal relationships with the de-
fined actions. Moreover, action transition probabilities are
also optimized in the learning stage.

Inference in the DBN consists on selecting the action with
the highest probability given the observations:

Ai(t) = max
a∈SA

Pr(EFi(t)|a) ∗ Pr(a)

Pr(EFi(t))

3. RESULTS

First, we present the 3D reconstruction of two subjected peo-
ple taken in a moving train coach. Since fast variations of
lighting conditions make automatic foreground segmentation
difficult, the input masks to our reconstruction system were
generated manually. We use an octree of maximum depth six
and a volume of interest of size 2.8 ∗ 2.5 ∗ 4.0m3, which cor-
responds to the monitored volume of the coach. Each camera
observes only part of the volume of interest. Figure 4 shows
one of the volumetric description outputs of the 3D distributed
reconstruction system using eight cameras. The system found
two connected regions.

Next, we present the performance of our individual behav-
ior analysis algorithm. We took 54 sequences (aproximately
20 minutes duration in total), in which actors play the defined
actions SA in another system. This system was built interior,
and a standard segmentation technique was sufficient enough
to do full automatic 3D reconstruction and then feature ex-
traction was performed. We defined alarm events on training
sequences and evaluated with test sequences.

Table 1 shows the efficiency of our system.
However, infinite possibility of kinematic movenets arise

a trade-off between the detection accuracy and the amount
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Fig. 4. Eight synchronized images at a frame and the corre-
sponding reconstructed scene

Event detection rate (%)
FALL DOWN 95.6

BANG 89.1
Average of the rest of defined actions 84

Table 1. Detection rate at each event from our system

of training data. Thus, our future work is collecting more
suitable sequences to improve our model.

4. CONCLUSIONS

Fish-eye cameras and voxel visibility allow us to monitor part
of a coach of a moving train. The distributed reconstruction
algorithm automatically selects the appropriate subset of cam-
eras to model each volume element. Furthermore, voxel vis-
ibility allows us to filter the output volumetric description,
which is decomposed into connected regions.

We successfully map the set of regions to a set of ac-
tive agent by using spatio-temporal information. Features
extracted from the regions are transfered to the agents. We
used a classic Hidden Markov Model dynamic Bayesian net-
work (HMM-DBN) to infer individual actions from agent’s
features.

We plan to extend the system in order to model person-
to-person interactions. The concept of agent can be extended
to hold interaction parameters like the relative distance and
speed difference with other agents. Our aim is to compute the
probability of normal or abnormal interaction situation based
on image features and the individual actions of the involved
agents.
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