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ABSTRACT

We consider reconstruction of a wave �eld distribution in an
input/object plane from data in an output/diffraction (sensor)
plane. For the forward propagation the matrix form of the dis-
crete diffraction transform (DDT ) originated in [1] and [2] is
used. This "matrix DDT " is aliasing free and precise for
pixel-wise invariant object and sensor plane distributions. A
contribution of this paper concerns a study of the backward
wave �eld propagation as an inverse problem for the diffrac-
tion kernel. The analysis of the conditioning of the transfer
DDT matrices is presented in order to �nd when the perfect
reconstruction of the object wave�eld distribution is possi-
ble. This condition number can be used as an indicator of
the accuracy of the wave �eld reconstruction. Simulation ex-
periments show that the developed inverse propagation algo-
rithm demonstrates an improved accuracy as compared with
the standard convolutional and discrete Fresnel transform al-
gorithms.

Index Terms� Digital holography, inverse coherent
imaging, wave �eld propagation and reconstruction.

1. INTRODUCTION

A wave �eld reconstruction from intensity and phase mea-
surements is one of the basic problems in digital coherent
imaging and holography (e.g. [3]). In a typical hologra-
phy scenario one distinguishes input/object and output/image
planes (Fig.1). The object plane is a source of light radiation
or re�ection propagating along the optical axis. The image
plane is parallel to the object plane with a distance z = d be-
tween the planes. The discrete diffraction transform (DDT )
links discrete pixelated values of the object and sensor distrib-
utions. It is the so-called discrete-to-discrete modeling which
is aliasing free and accurate for a pixel-wise invariant object
distribution and an image from a pixelated sensor [1],[2].
In this paper the reconstruction of the object distribution

from a distribution given in the image plane is considered as
an inverse problem. Depending on the pixel size, the size
of the sensor and the distance between the object and image
planesDDT matrices can be very ill-conditioned what makes
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the reconstruction of the object distribution dif�cult or even
impossible. The DDT forward matrix transform modeling
is a natural and very productive tool to study limitations of
the wave �eld reconstruction and to develop novel effective
algorithms. In this paper we study the accuracy of this inverse
reconstruction technique and link it with the conditioning of
the transfer matrices of DDT .

Fig. 1. Principal setup of wave �eld propagation and recon-
struction.

2. STANDARD MODELING OFWAVE FIELD
PROPAGATION

Let ud(x; y) be a complex-valued 2D wave �eld de�ned in
a image plane z = d as a function of the lateral coordinates
x and y. According to the scalar diffraction theory there is
the diffraction operator Dz which links this sensor wave �eld
distribution with the object wave �eld u0(x; y) at z = 0 as
ud(x; y) = Ddfu0g = fgz ~ u0g(x; y). We assume that
z �

p
x2 + y2 and use the Fresnel approximation of the

diffraction kernel (point spread function (PSF)) gz as

gz(x; y) =
exp(j2�z=�)

j� � z exp[j
�

�z
(x2 + y2)], (1)

where � is a wavelength.
The following important points de�ne a speci�c of the

considered coherent wave �eld convolution and the corre-
sponding inverse problem. First, PSF is complex valued with
the absolute value invariant with respect to x and y. Thus,
this PSF has an in�nite support. The blur effects in ud are



obtained and de�ne by the phase characteristic of PSF (not by
the module as it is in the standard deblurring settings). These
moments de�ne essential speci�c features of the considered
deconvolution.
The kernel of the inverse diffraction operator (which is

known analytically, e.g. [3]) de�nes the estimate of u0 from
ud as û0(x; y) = D�dfudg. This estimate is perfect (pre-
cise for any u0), û0 = u0, provided that ud(x; y) is given for
all (x; y) 2 R2 and non-perfect (û0 is not identical to u0),
for a �nite size sensor [3]. The standard algorithms (convo-
lutional methods, Fourier and Fresnel transforms, etc.) are
based on digital approximations of the inverse operator D�d
and can be given in the form û0(x; y) = D̂�dfûdg, where the
hat stands for the discrete approximation of D�d, where ûd
is a hologram detected on a �nite size sensor. All these dis-
crete algorithms inherit limitations following from using for
a �nite size sensor the operator D�d derived for the in�nite
size sensor. Contrary to this approach the inverse imaging
paradigm considered in this paper is based on digital approx-
imation of a truncated version of the forward propagation op-
erator Dd, ûd(x; y) = D̂trd fu0g. The Dtrd is shift-varying and
depending on parameters can be very ill-conditioned contrary
to Dd, which is shift-invariant and well-conditioned. The in-
verse imaging paradigm is based on inverse of this operator
D̂trd .

3. MATRIX DISCRETE DIFFRACTION
TRANSFORM

The standard techniques mentioned in the previous section
consider discrete models as approximations for forward and
backward wave �eld propagation integrals. In the approach
proposed in [1], [2], further developed and studied in this pa-
per, we follow different ideas.
In our model we assume that the input and output sig-

nals are pixel-wise constant distributions de�ned by values
in pixels of the digital devices: for instance, an SLM and
a sensor respectively. In [2] we presented a novel algebraic
matrix model for DDT called asMatrix Discrete Diffraction
Transform (M� DDT ), which gives an accurate discrete-
to-discrete forward propagation modeling for pixel-wise in-
variant distributions. In contrast to standard methods we are
free from restrictions on the size of the pixel and image. The
pixels and images in the object and image planes can be of
different size and rectangular, but �xed (physical restriction
on certain devices with speci�c parameters).

3.1. ForwardM�DDT modeling

Let pixels in object and sensor planes be rectangular of the
sizes (�y;0 � �x;0) and (�y;z � �x;z), respectively. The
sizes of the images in the object u0 and sensor uz planes
measured in pixels can be also different Ny;0 � Nx;0 and
Ny;z � Nx;z . According to the formulas (24)-(26) from [2]

the forward wave �eld propagation for the kernel (1) can be
presented in the matrix form as

uz = � �Ay � u0 �AT
x ; � = exp(j2�z=�)=(j�z); (2)

Ay[k; s] =
Cy[k; s]

�y;z

Z �y;z=2

��y;z=2

Z �y;0=2

��y;0=2

d�d�0 � (3)

exp(j
2�

�z
(k�y;z � s�y;0)(�0 + �)) � exp(j

�

�z
(�0 + �)2),

Ax[l; t] =
Cx[l; t]

�x;z

Z �x;z=2

��x;z=2

Z �x;0=2

��x;0=2

d�d�0 �

exp(j
2�

�z
(l�x;z � t�x;0)(�0 + �)) � exp(j

�

�z
(�0 + �)2),

where k = �Ny;z=2; :::; Ny;z=2�1, s = �Ny;0=2; :::; Ny;0=2�
1, l = �Nx;z=2; :::; Nx;z=2�1, t = �Nx;0=2; :::; Nx;0=2�1
and Cy[k; s] = exp(j

�

�z
(k�y;z � s�y;0)

2), Cx[l; t] =

exp(j
�

�z
(l�x;z � t�x;0)2).

The formula (2) de�nes what we call the matrix discrete
diffraction transform (M�DDT ).
The Ay[k; s], Ax[l; t] becomes shift-invariant depending

on the differences of the arguments k � l and s � t as soon
as the pixels in the object and sensor planes take equal sizes,
�x;z = �x;0 = �x and �y;z = �y;0 = �x. Overall, in
this caseM�DDT becomes simpler because the matrices
Ay ,Ax are symmetricalAy[k; s] = Ay[k� s] = Ay[s� k],
Ax[l; t] = Ax[l� t] = Ax[t� l]. If�y = �x andNy = Nx
thenAx = Ay .

3.2. Backward (inverse) modeling and perfect recon-
struction

The inverse ofM�DDT is able to give the perfect recon-
struction of the pixel-wise object distribution if the forward
operatorM�DDT is non-singular.
In particular, it is shown in [2] that for rectangular object

and sensor planes and non-singular well-posed Ay and Ax

the perfect reconstruction is given by the formula

û0 =
1

�
(AH

y Ay)
�1AH

y uzA
�
x(A

T
xA

�
x)
�1, (4)

where (H) stands for the Hermitian conjugate,AH
y = (A

�
y)
T .

However, numerical experiments demonstrate that de-
pending on the distance z; the pixels' sizes, and object and
sensor sizes the matrices Ay and Ax can be extremely ill-
conditioned. One of the ef�cient ways to deal with this
ill-conditioning is to involve a prior information on the object
distribution in question. In [2] we show the ef�ciency of
the inverse using the standard Tikhonov`s regularizator [4].
Instead of solution of the equation (2) we are looking for the
regularized estimate of u0 de�ned by minimization of the
quadratic criterion L = jjuz � �Ayu0A

T
x jj2F + �2jju0jj2F ,



û0 = argmin
u0
L, (5)

where the quadratic Frobenius matrix norm is de�ned by the
formula jju0jj2F =

P
k;l ju0(k; l)j2.

The regularization penalty jju0jj2F enables a bounded val-
ues for reconstructed u0. The regularization parameter �2
controls the level of the regularization or the smoothness of
û0 imposed by this penalization [4].
The regularized inverse û0 de�ned as a minimizer of L

approximately could be calculated as [2]

û0=�
�(j�jAH

y Ay + �I)
�1 � (6)

AH
y uzA

�
x(j�jA

T
xA

�
x + �I)

�1, � > 0.

Comparing the last equation with (4) we note that the in-
verse of AH

y Ay and AT
xA

�
x is replaced by the inverse of

their regularized versions j�jAH
y Ay+�I and j�jAT

xA
�
x+�I.

In general, the regularized inverse (6) gives a biased esti-
mate of the true distribution. Smaller � means a smaller bias.
However, too small � is not applicable as the estimate û0
can become very noisy and even completely destroyed be-
cause of ampli�cation observation noises as well as round off
calculation errors, i.e. because of the effects typical for ill-
conditioned problems.
One of the main pragmatical results of this paper is that

we show that the regularized inverse imaging is able to give
results which are essentially better that it can be achieved on
the base of the standard techniques.
It is proved in [2] that the perfect reconstruction û0 = u0

can be achieved for any size of the object and image planes
and the pixels in these planes if the following sampling con-
ditions are ful�lled:

Ny=
� � z

�y;0�y;z
; Nx=

� � z
�x;0�x;z

; (7)

In this case transfer matrices Ay and Ax are well-posed
and the regularization is not required (�! 0).

4. SIMULATION EXPERIMENTS FORWAVE FIELD
RECONSTRUCTION

It is assumed that the images in object and sensor planes are
square but can be of different size,Ny;0 = Nx;0 = N0 = 256
and Ny;z = Nx;z = Nz = qN0, q � 1. Thus, the image in
the object plane is always smaller than or equal to that in the
object plane with the ratio of the sizes denoted as q = Nz=N0.
It follows from general speculations that the better accuracy
of reconstruction for the object plane can be obtained for the
larger sensor image (larger q) . While this statement is quite
obvious, one of the problems addressed in simulation is the
in�uence of the size parameter q (e.g. q = f1; 2; 4g) on the
condition numbers of the DDT matrices and on the accuracy

of the image reconstruction. It is assumed that all pixel are
square of sizes �y;0 = �x;0 = �0 and �y;z = �x;z = �z
equal to 7.4 �m.
The condition number of the square complex valued ma-

tricesAH
y Ay (Ny;0�Ny;0) orAT

xA
�
x (Nx;0�Nx;0) are cal-

culated as a relation of the maximum singular value of this
matrices to the minimum one, cond = smax=smin.
We introduce the so-called "in-focus" distance calculated

according to the sampling condition (7) as df j q = Nz ��z �
�0=� [2]. In order to emphasize the dependence of the "in-
focus" distance on the parameter q we will use notation df jq
where the values of q is shown. It has been found that for
this distance the condition numbers (cond) achieve minimum
values, and the formula (4) enables a high-accuracy recon-
struction without regularization. With these parameters and
for square images Ay = Ax, and the matrices AH

y Ay and
AT
xA

�
x have equal condition numbers. In our experiments we

assume the amplitude modulation of the object distribution,
de�ned by the lena test image.

Fig. 2. Accuracy of the wave �eld reconstruction via RMSE
versus distance for M � DDT and M � IDFrT methods
with averaged (av) and nonaveraged (non-av) matrices.

Fig. 2 illustrates the accuracy (characterized by RMSE
values) obtained by the considered inverse imaging technique
versus the best standard one known as the inverse discrete
Fresnel transform (IDFrT ). To study the accuracy of the
latter algorithm for the varying distance z = d provided that
the pixel sizes are �xed we use here the matrix version of
M � IDFrT (see [2] for details).
In order to separate the effects of integration in (3) and

of regularized inverse we consider estimation with the "av-
eraged" matrices Ay and Ax as they are de�ned in (3) and
their "nonaveraged" versions corresponding to small �0 and
�z when integration in the formulas (3) is dropped. First,
note that the averaging is essential and indeed improves the
accuracy for d < df j q only, and it is true for the both types
of the algorithms the regularized inverse and M � IDFrT .
The accuracy effects of the inverse is obvious for all distances



with improvement in RMSE more than 40%.

Fig. 3. Object wave �eld reconstruction (amplitude distribu-
tion) the distance z = 0:5df : (left) standard inverse Fresnel
transform fails with a pattern of clear aliasing effects, (cen-
ter)M � IDFrT with averaged matrices and (right) inverse
M �DDT give a good quality aliasing free reconstruction.

The Fig. 3 demonstrates the ability to obtain a high-
quality imaging in cases, when the standard techniques fail
due to the aliasing effects. The middle image shows the
results obtained by M � IDFrT using the averaged matri-
ces. This modi�cation of the standard techniques essentially
improves the result obtained with no averaging (left image).
However, gives the imaging which is worse than obtained
using the inverse imaging techniques and averages matrices
(right image).
In our next results we demonstrate that the condition num-

ber of the matrix AH
y Ay (shown in Fig. 5) can be used for

prediction of the accuracy (with RMSE shown in Fig. 4).
All these curves are given versus the distance z = d. The
RMSE accuracy takes minimum value when the condition
number is small. These results are shown for various sensor
redundancy parameter q. Larger q results in a larger area for
d where the conditioning is small and respectively RMSE is
minimal.

Fig. 4. RMSE accuracy for different methods versus the dis-
tance d, q = 1; 2; 4.

These experiments are produced for different algorithms
and the advantage of the regularized inverseM�DDT algo-
rithm (6) for all distances and corresponding q over the con-

ventional algorithms is obvious.

Fig. 5. Condition numbers cond (in log scale) versus the dis-
tance d for averaged and non-averaged matrices, q = 1; 2; 4.

The condition number is small for all sensor sizes, if
d < df jq. For these �smaller� distances we obtain a
high-accuracy (nearly perfect) reconstruction. As soon as
the condition number grows rapidly for d > df jq=2 and
d > df jq=4; the accuracy of reconstruction is correspond-
ingly going down. However it is clear that a larger sensor
size (q > 1) results in a better accuracy for all methods of
the wave �eld reconstruction. A similarity in behavior of
the curves in Fig.4 and Fig.5 con�rms that a study of the
condition number gives a clear indication of the accuracy of
reconstruction and can be used for optimization of optical
setups and sensors.
Overall the above results demonstrate the advantage of the

proposed inverse imaging technique for application in holog-
raphy based problems dealing with the coherent wave �eld
reconstruction. It shown that the condition number can be
used for design and optimization of optical setups and in im-
age processing techniques.
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