
ar
X

iv
:0

90
3.

41
62

v1
  [

m
at

h.
O

C
]  

24
 M

ar
 2

00
9

TOTAL VARIATION RESTORATION OF SPECKLED IMAGES
USING A SPLIT-BREGMAN ALGORITHM
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ABSTRACT

Multiplicative noise models occur in the study of several coherent
imaging systems, such as synthetic aperture radar and sonar, and ul-
trasound and laser imaging. This type of noise is also commonly
referred to asspeckle. Multiplicative noise introduces two additional
layers of difficulties with respect to the popular Gaussian additive
noise model: (1) the noise is multiplied by (rather than added to)
the original image, and (2) the noise is not Gaussian, with Rayleigh
and Gamma being commonly used densities. These two features
of the multiplicative noise model preclude the direct application of
state-of-the-art restoration methods, such as those basedon the com-
bination of total variation or wavelet-based regularization with a
quadratic observation term. In this paper, we tackle these difficul-
ties by: (1) using the common trick of converting the multiplicative
model into an additive one by taking logarithms, and (2) adopting the
recently proposed split Bregman approach to estimate the underlying
image under total variation regularization. This approachis based on
formulating a constrained problem equivalent to the original uncon-
strained one, which is then solved using Bregman iterations(equiv-
alently, an augmented Lagrangian method). A set of experiments
show that the proposed method yields state-of-the-art results.

Index Terms— Speckle, multiplicative noise, total variation,
Bregman iterations, augmented Lagrangian, synthetic aperture radar.

1. INTRODUCTION

1.1. Coherent Imaging and Speckle Noise

The standard statistical models of coherent imaging systems, such as
synthetic aperture radar/sonar (SAR/SAS), ultrasound imaging, and
laser imaging, are supported on multiplicative noise mechanisms.
With respect to a given resolution cell of the imaging device, a co-
herent system acquires the so-called in-phase and quadrature com-
ponents1 which are collected in a complex reflectivity (with the in-
phase and quadrature components corresponding to the real and imag-
inary parts, respectively). The complex reflectivity of a given resolu-
tion cell results from the contributions of all the individual scatterers
present in that cell, which interfere in a destructive or constructive
manner, according to their spatial configuration. When thisconfigu-
ration is random, it yields random fluctuations of the complex reflec-
tivity, a phenomenon which is termedspeckle. The statistical prop-
erties of speckle have been widely studied and there is a large body

1The in-phase and quadrature components are the outputs of two demod-
ulators with respect to, respectively,cos(ω0t)) and sin(ω0t), whereω0 is
the carrier angular frequency.

of literature [11], [14]. Assuming no strong specular reflectors and
a large number of randomly distributed scatterers in each resolution
cell (relative to the carrier wavelength), the squared amplitude (in-
tensity) of the complex reflectivity is exponentially distributed [14].
The termmultiplicative noiseis clear from the following observa-
tion: an exponential random variable can be written as the product
of its mean value (parameter of interest) by an exponential variable
of unit mean (noise). The scenario just described, known asfully
developed speckle, leads to observed intensity images with a charac-
teristic granular appearance due to the very lowsignal to noise ratio
(SNR). Notice that the SNR, defined as the ratio between the squared
intensity mean and the intensity variance, is equal to one (0 dB).

1.2. Restoration of Speckled Images: Previous Work

A common approach to improving the SNR in coherent imaging con-
sists in averaging independent observations of the same pixel. In
SAR/SAS systems, this procedure is calledmulti-look (M -look, in
the case ofM looks), and each independent observation may be ob-
tained by a different segment of the sensor array. For fully developed
speckle, the SNR of anM -look image isM . Another way to obtain
an M-look image is to low pass filter (with a moving average kernel
with support sizeM ) a 1-look fully developed speckle image, mak-
ing evident the tradeoff between SNR and spatial resolution. A great
deal of research has been devoted to developing nonuniform filters
which average large numbers of pixels in homogeneous regions yet
avoid smoothing across discontinuities in order to preserve image
detail/edges [9]. Many other speckle reduction techniqueshave been
proposed; see [14] for a comprehensive literature review upto 1998.

A common assumption is that the underlying reflectivity image
is piecewise smooth. In image restoration under multiplicative noise,
this assumption has been formalized using Markov random fields,
under the Bayesian framework [14], [2] and, more recently, using
total variation(TV) regularization [1], [12], [16], [17].

1.3. Contribution

In this paper, we adopt TV regularization. In comparison with the
canonical additive Gaussian noise model, we face two difficulties:
the noise is multiplicative; the noise is non-Gaussian, butfollows
Rayleigh or Gamma distributions. We tackle these difficulties by
first converting the multiplicative model into an additive one (which
is a common procedure) and then adopting the recently proposed
split Bregman approach to solve the optimization problem that re-
sults from adopting a total variation regularization criterion.

Other works that have very recently addressed the restoration
of speckled images using TV regularization include [1], [12], [16],
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[17]. The commonalities and differences between our approach and
the ones followed in those papers will be discussed after thedetailed
description of our method, since this discussion requires notation
and concepts which will be introduced in the next section.

2. PROBLEM FORMULATION

Let y ∈ R
n
+ denote ann-pixels observed image, assumed to be a

sample of a random imageY, the mean of which is the underlying
reflectivity imagex ∈ R

n
+, i.e.,E[Y] = x. Adopting a conditionally

independent multiplicative noise model, we have

Yi = xiNi, for i = 1, ..., n, (1)

whereN ∈ R
n
+ is an image of independent and identically dis-

tributed (iid) noise random variables with unit mean,E(Ni) = 1,
following a common densitypN . ForM -look fully developed speckle
noise,pN is a Gamma density withE[N ] = 1, andσ2

N = 1/M , i.e.,

pN(n) =
MM

Γ(M)
nM−1e−nM . (2)

An additive noise model is obtained by taking logarithms of (1).
For some pixel of the image, the observation model becomes

log Y
| {z }

G

= log x
| {z }

z

+ logN
| {z }

W

. (3)

The density of the random variableW = logN is

pW (w) = pN(n = ew) ew =
MM

Γ(M)
eMwe−ewM , (4)

thus
pG|Z(g|z) = pW (g − z). (5)

Under the regularization and Bayesian frameworks, the original
image is inferred by solving a minimization problem with theform

bz ∈ argmin
z

L(z), (6)

whereL(z) is the penalized minus log-likelihood,

L(z) = − log pG|Z(g|z) + λφ(z). (7)

= M
n

X

s=1

`

zs + egs−zs
´

+ λφ(z) + A, (8)

withA an irrelevant additive constant,φ the penalty/regularizer (neg-
ative of the log-prior, from a the Bayesian perspective), and λ the
regularization parameter.

In this work, we adopt the TV regularizer, that is,

φ(z) = TV(z) =

n
X

s=1

p

(∆h
sz)2 + (∆v

sz)2, (9)

where(∆h
sz and∆v

sz) denote the horizontal and vertical first order
differences at pixels ∈ {1, . . . , n}, respectively.

Each term
`

zs + egs−zs
´

of (8), corresponding to the negative
log-likelihood, is strictly convex and coercive, thus so istheir sum.
Since the TV regularizer is also convex (though not strictlyso), the
objective functionL possesses a unique minimizer [6]. In terms
of optimization, these are desirable properties that wouldnot hold if
we had formulated the inference in the original variablesx, since the
resulting negative log-likelihood is not convex; this was the approach
followed in [1] and [16].

3. BREGMAN/AUGMENTED LAGRANGIAN APPROACH

There are several efficient algorithms to compute the TV regularized
solution for a quadratic data term; for recent work, see [3],[5], [8],
[10], [19], [21], and other references therein. When the data term
is not quadratic, as in (8), the problem is more difficult and far less
studied. Herein, we follow the split Bregman approach [10] which
is composed of the following two steps: (splitting) a constrained
problem equivalent to the original unconstrained one is formulated;
(Bregman) this constrained problem is solved using the Bregman it-
erative approach [20]. Before describing these two steps indetail, we
briefly review the Bregman iterative approach. The reader isreferred
to [10], [20], for more details.

3.1. Bregman Iterations

Consider a constrained optimization problem of the form

min
x

E(x)

s.t. H(x) = 0, (10)

with E andH convex,H differentiable, andminx H(x) = 0 . The
so-called Bregman divergence associated with the convex function
E is defined as

Dp

E(x,y) ≡ E(x)−E(y)− 〈p,x− y〉, (11)

wherep belongs to the subgradient ofE aty, i.e.,

p ∈ ∂E(y) = {u : E(x) ≥ E(y) + 〈u,x− y〉, ∀x ∈ domE}.

The Bregman iteration is given by

x
k+1 = argmin

x
Dpk

E (x,xk) +H(x) (12)

= argmin
x

E(x)− 〈pk,x− x
k〉+H(x), (13)

wherepk ∈ ∂E(xk). It has been shown that this procedure con-
verges to a solution of (10) [10],[20].

Concerning the update ofpk, we have from (12), that0 ∈
∂(Dp

E(x,x
k) + µH(x)), when this sub-differential is evaluated at

xk+1, that is

0 ∈ ∂(Dp

E(x
k+1,xk) +H(xk+1)).

Since it was assumed thatH is differentiable, and sincepk+1 ∈
∂E(xk) at this point,pk+1 should be chosen as

p
k+1 = p

k −∇H(xk+1). (14)

In the particular case whereH(x) = (τ/2)‖Ax− b‖22, it can
be shown (see [20]) that the iteration (13) is equivalent to

x
k+1 = argmin

x
E(x) +

τ

2
‖Ax− b

k‖22 (15)

b
k+1 = b+ b

k −Ax
k. (16)

3.2. Splitting the Problem into a Constrained Formulation

The original unconstrained problem (6) is equivalent to thecon-
strained formulation

(bz, bu) = argmin
z,u

L(z,u) (17)

s.t. ‖z− u‖22 = 0, (18)



with

L(z,u) = M

n
X

s=1

`

zs + egs−zs
´

+ λTV(u). (19)

Notice how the original variable (image)z is split into a pair of
variables(z,u), which are decoupled in the objective function (19).

3.3. Applying Bregman Iterations

Notice that the problem (17)-(18) has exactly the form (10),with
x ≡ [zTuT ]T , E(x) ≡ L(z,u), andH(x) ≡ (τ/2)‖Ax − b‖22,
with A = [I,−I] andb = 0. Using this equivalence, the Bregman
iteration (15)-(16) becomes

(zk+1,uk+1) = argmin
z,u

L(z,u) +
τ

2
‖z− u− b

k‖2,(20)

b
k+1 = b

k − (zk − u
k). (21)

We address the minimization in (20) using an alternating min-
imization scheme with respect tou andz. The complete resulting
algorithm is summarized in Algorithm 1.

Algorithm 1 TV restoration of multilook images.

Initialization: z = 0, u = 0, b = 0, λ, τ , k := 1.
1: repeat
2: for t = 1 : tm do
3: zk := argminz

Pn

s=1

`

zs + egs−zs
´

+ τ
2M

‖z−uk−bk‖2

4: uk := argminu
1

2
‖u− zk + bk‖2 + λ

τ
TV(u).

5: end for
6: bk+1 := bk − (zk − uk)
7: k := k + 1
8: until ‖zk − zk−1‖22/‖z

k−1‖22 < 10−4

The minimization with respect toz, in line 3, has closed form
in terms of the Lambert W function [7]. However, we found thatthe
Newton method yields a faster solution by running just four itera-
tions. Notice that the minimization in line 3 is in fact a set of n de-
coupled scalar minimizations. For the minimization with respect to
u (line 4), which is a TV denoising problem, we run a few iterations
(typically 10) of Chambolle’s algorithm [3]. The number of inner
iterationstm was set to one in all the experiments reported below.
The stopping criterion (line 8) is the same as in [12]. The estimate of

x produced by the algorithm is naturallybx = ez
k

, component-wise.
Notice how the split Bregman approach converted a difficult

problem involving a non-quadratic term and a TV regularizerinto
two simpler problems: a decoupled minimization problem (line 3)
and a TV denoising problem with a quadratic data term (line 4).

3.4. Remarks

In the case of linear constraints, the Bregman iterative procedure de-
fined in (13) is equivalent to an augmented Lagrangian method[13];
see [18], [20] for proofs. It is known that the augmented Lagrangian
is better conditioned that the standard Lagrangian for the same prob-
lem, thus a better numerical behavior is expectable.

TV-based image restoration under multiplicative noise wasre-
cently addressed in [17]. The authors apply an inverse scalespace
flow, which converges to the solution of the constrained problem of
minimizing TV(z) under an equality constraint on the log-likelihood;

Table 1. Experimental results (Iter denotes the number of iterations;
Cam. is the Cameraman image).

Proposed [12] [1]
Image M Err Iter Err Iter Err Iter
Lena 5 0.1134 53 0.1180 115 0.1334 652
Lena 33 0.0688 23 0.0709 178 0.0748 379
Cam. 3 0.1331 100 0.1507 182 0.1875 1340
Cam. 13 0.0892 97 0.0989 196 0.1079 950

this requires a carefully chosen stopping criterion, because the solu-
tion of this constrained problem is not a good estimate.

In [12], a splitting of the variable is also used to obtain an objec-
tive function with the form

E(z,u) = L(z,u) + α‖z− u‖22; (22)

this is the so-called splitting-and-penalty method. Notice that the
minimizers ofE(z,u) converge to those of (17)-(18) only whenα
approaches infinity. However, sinceE(z,u) becomes severely ill-
conditioned whenα is very large, causing numerical difficulties, it
is only practical to minimizeE(z,u) with moderate values ofα;
consequently, the solutions obtained are not minima of the regular-
ized negative log-likelihood (8).

4. EXPERIMENTS

In this section we report experimental results comparing the perfor-
mance of the proposed approach with that of the recent state-of-the-
art methods in [1] and [12]. All the experiments use synthetic data,
in the sense that the observed image is generated according to (1)-
(2), wherex is a clean image. As in [12], we select the regularization
parameterλ by searching for the value leading to the lowest mean
squared error with respect to the true image. The algorithm is ini-
tialized with the observed noisy image. The quality of the estimates
is assessed using the relative error (as in [12]),

Err =
‖bx − x‖2
‖x‖2

.

Table 1 reports the results obtained using Lena and the Camera-
man as original images, for the same values of the number of looks
(M in (2)) as used in [12]. In these experiments, our method always
achieves lower relative errors with fewer iterations, whencompared
with the methods from [12] and [1] (the results concerning the algo-
rithm from [1] are those reported in [12]). It’s important topoint out
that the computational cost of each iteration of the algorithm of [12]
is essentially the same as that of our algorithm.

Figure 1 shows the noisy and restored images, for the same ex-
periments reported in Table 1. Finally, Figure 2 plots the evolu-
tion of the objective functionL(zk) and of the constraint function
‖zk − uk‖22 along the iterations, for the example with the Cam-
eraman image andM = 3. Observe the extremely low value of
‖zk −uk‖22 at the final iterations, showing that, for all practical pur-
poses, the constraint (18) is satisfied.

5. CONCLUDING REMARKS

We have proposed an approach to total variation denoising ofimages
contaminated by multiplicative noise, by exploiting a split Bregman



Fig. 1. Left column: observed noisy images. Right column: image
estimates. First and second rows: Lena,M = 5 andM = 33. Third
and fourth rows: Cameraman,M = 3 andM = 13.
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Fig. 2. Evolution of the objective functionL(zk) and of the con-
straint function‖zk − uk‖22, along the iterations of the algorithm,
for the experiment with the Cameraman image andM = 3.

technique. The proposed algorithm is very simple and, in theex-
periments herein reported, exhibited state of the art performance and
speed. We are currently working on extending our methods to prob-
lems involving linear observation operators (e.g., blur) and other re-
lated noise models, such as Poisson.
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