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ABSTRACT

Multiplicative noise models occur in the study of severah@@nt
imaging systems, such as synthetic aperture radar and, sowiul-
trasound and laser imaging. This type of noise is also comymon
referred to aspeckle Multiplicative noise introduces two additional
layers of difficulties with respect to the popular Gaussidditive
noise model: (1) the noise is multiplied by (rather than aldttg
the original image, and (2) the noise is not Gaussian, wityldigh
and Gamma being commonly used densities. These two featur
of the multiplicative noise model preclude the direct aggtiion of
state-of-the-art restoration methods, such as those loastbe@ com-
bination of total variation or wavelet-based regulariaatiwith a
quadratic observation term. In this paper, we tackle thé§ieud
ties by: (1) using the common trick of converting the multiptive
model into an additive one by taking logarithms, and (2) éidggthe
recently proposed split Bregman approach to estimate tterlying
image under total variation regularization. This approadfased on
formulating a constrained problem equivalent to the oafimcon-
strained one, which is then solved using Bregman iteratieqaiv-
alently, an augmented Lagrangian method). A set of expeitisne
show that the proposed method yields state-of-the-aritsesu

Index Terms— Speckle, multiplicative noise, total variation,
Bregman iterations, augmented Lagrangian, syntheti¢aeenadar.

1. INTRODUCTION

1.1. Coherent Imaging and Speckle Noise

The standard statistical models of coherent imaging systeath as
synthetic aperture radar/sonar (SAR/SAS), ultrasoundjiingg and
laser imaging, are supported on multiplicative noise merdmas.
With respect to a given resolution cell of the imaging deyvEeo-
herent system acquires the so-called in-phase and quesli@im-
ponentd which are collected in a complex reflectivity (with the in-
phase and quadrature components corresponding to thexceiahag-
inary parts, respectively). The complex reflectivity of aegi resolu-
tion cell results from the contributions of all the indivaliscatterers
present in that cell, which interfere in a destructive orstaictive
manner, according to their spatial configuration. Whenahbisfigu-
ration is random, it yields random fluctuations of the compédlec-
tivity, a phenomenon which is termegeckle The statistical prop-
erties of speckle have been widely studied and there is a laody

1The in-phase and quadrature components are the outputs afewod-
ulators with respect to, respectivelyps(wot)) andsin(wot), wherewy is
the carrier angular frequency.
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of literature [11], [14]. Assuming no strong specular retibes and
a large number of randomly distributed scatterers in easbludon
cell (relative to the carrier wavelength), the squared &nmge (n-
tensity of the complex reflectivity is exponentially distributetH].
The termmultiplicative noiseis clear from the following observa-
tion: an exponential random variable can be written as tbert
of its mean value (parameter of interest) by an exponensiaakile
of unit mean (noise). The scenario just described, knowfulhs
developed speckléeads to observed intensity images with a charac-
®&ristic granular appearance due to the very $ignal to noise ratio
(SNR). Notice that the SNR, defined as the ratio between thared
intensity mean and the intensity variance, is equal to OrmiBj.

1.2. Restoration of Speckled Images: Previous Work

A common approach to improving the SNR in coherent imagimg co
sists in averaging independent observations of the san@. pir
SAR/SAS systems, this procedure is calfedlti-look (M -look, in
the case of\/ looks), and each independent observation may be ob-
tained by a different segment of the sensor array. For fidiyetbped
speckle, the SNR of ai/-look image isM. Another way to obtain
an M-look image is to low pass filter (with a moving averagenkér
with support size\l) a 1-look fully developed speckle image, mak-
ing evident the tradeoff between SNR and spatial resolutiogreat
deal of research has been devoted to developing nonuniftiersfi
which average large numbers of pixels in homogeneous regien
avoid smoothing across discontinuities in order to presémage
detail/edges [9]. Many other speckle reduction techniduae® been
proposed; seé [14] for a comprehensive literature revieto 4j998.

A common assumption is that the underlying reflectivity imag
is piecewise smooth. Inimage restoration under multiilieanoise,
this assumption has been formalized using Markov randordsfiel
under the Bayesian framework [14].] [2] and, more recentiyna
total variation (TV) regularization|[1],[12],[16],[[17].

1.3. Contribution

In this paper, we adopt TV regularization. In comparisorhvtite
canonical additive Gaussian noise model, we face two diffési
the noise is multiplicative; the noise is non-Gaussian, follbws
Rayleigh or Gamma distributions. We tackle these diffiesltby
first converting the multiplicative model into an additiveeo(which
is a common procedure) and then adopting the recently pedpos
split Bregman approach to solve the optimization probleat tk-
sults from adopting a total variation regularization aiita.

Other works that have very recently addressed the restarati
of speckled images using TV regularization include [11.][126],
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[17]. The commonalities and differences between our agpread 3. BREGMAN/AUGMENTED LAGRANGIAN APPROACH
the ones followed in those papers will be discussed afted¢keled

description of our method, since this discussion requitastion ~ There are several efficient algorithms to compute the TVIeezed
and concepts which will be introduced in the next section. solution for a quadratic data term; for recent work, see[Ed],[8],
[10], [19], [21], and other references therein. When thedatm
is not quadratic, as il 8), the problem is more difficult aadléss
studied. Herein, we follow the split Bregman appro&ch [18]ck

Lety € R denote am-pixels observed image, assumed to be aiS composed of the following two steps: (splitting) a coasted

sample of a random imag¥, the mean of which is the underlying problem equiyalent to t_he original un_constrained_one iEnfdate_d;
reflectivity imagex € R” ,i.e., E[Y] = x. Adopting a conditionally (Bregman) this constrained problem is solved using the iBeagit-
independent multiplicative noise model, we have erative approach [20]. Before describing these two stegstiil, we

briefly review the Bregman iterative approach. The readesfesred
Y; =a;N;, for i=1,...,n, @ to [10], [20], for more details.

2. PROBLEM FORMULATION

whereN € R7 is an image of independent and identically dis-
tributed (iid) noise random variables with unit me&(V;) = 1,

following a common density . For M-look fully developed speckle Consider a constrained optimization problem of the form
noise,py is a Gamma density witk[N] = 1, andox = 1/M, i.e,

3.1. Bregman Iterations

o min E(x)
( ) _ M M-1_—nM (2) *
pr(n) = pop n e, st H(x)=0, (10)
An additive noise model is obtained by taking logarithmgTf ( With £2and H convex, H differentiable, andninx H(x) = 0. The
For some pixel of the image, the observation model becomes so-called Bregman divergence associated with the conveotion
E'is defined as
logY =logz+log N . 3)
= Y~ = DE(x,y) = E(x) - E(y) — (P, x —y), 11)
The density of the random variable = log N is wherep belongs to the subgradient &faty, i.e.,

MM ey p € 0E(y)={u: E(x) > E(y)+ (u,x—y), Vx € domFE}.

pw(w) = pr(n =e®)e” = com e M (@) N
(M) The Bregman iteration is given by
thus <1 = argmin DY (x,x") + H(x) (12)
paz(9]2) = pw(g — 2). (5) = argminbip (X,
~ Under the regularization and Bayesian frameworks, theraig = argmin B(x) — (p*,x — x) + H(x), (13)
image is inferred by solving a minimization problem with foem x
% € arg min L(z), (6) Wherep® € 9E(x"). It has been shown that this procedure con-
z verges to a solution of (10) [10],[20].
H k
whereL(z) is the penalized minus log-likelihood, Concerning the update gf”, we have from [(IR), thao €
d(D%(x,x") + pH(x)), when this sub-differential is evaluated at
L(z) = —logpgz(glz)+ A¢(z). (M) xF* thatis
= MY (st e ) £ Ad(z) + 4, (9) 0 € O(DY(x",x*) + H(x")).

s=1
_ _ N _ Since it was assumed thét is differentiable, and sincg* ™! €
with A anirrelevant additive constantthe penalty/regularizer (neg- OE(x") at this point,p*** should be chosen as

ative of the log-prior, from a the Bayesian perspective)] arthe
regularization parameter. p"tt =p" — VHEF). (14)
In this work, we adopt the TV regularizer, that is, ) ]
In the particular case whet# (x) = (7/2)||Ax — b||3, it can

n ey . . . :
5(2) = TV(2) = Z (BPa T (Aol ©) be shown (se€¢[20]) that the iterati@n(13) is equivalent to
s=1 <" = arg mxin E(x)+ %”AX —b"|3 (15)
where(AQz andA?z) denote the horizontal and vertical first order B
differences at pixes € {1,...,n}, respectively.

Each term(z, + e%*~**) of (), corresponding to the negative o _ _ _
log-likelihood, is strictly convex and coercive, thus sdfisir sum. ~ 3-2. Splitting the Problem into a Constrained Formulation
Since the TV regularizer is also convex (though not stristly, the 14 original unconstrained problerfl (6) is equivalent to ¢oe-
objective functionL possesses a unique minimizef [6]. In terms g oinad formulation
of optimization, these are desirable properties that waooltchold if
we had formulated the inference in the original variablesince the (z,4) = argminL(z,u) a7
resulting negative log-likelihood is not convex; this wias approach zu
followed in [1] and [16]. st. |z — w3 =0, (18)

b+ b* — Ax". (16)



with

L(z,u) = Mzn: (zs + €% 7%) + ATV (u). (19)
s=1

Notice how the original variable (image)is split into a pair of
variables(z, u), which are decoupled in the objective functibnl(19).

3.3. Applying Bregman lterations

Notice that the problen{{17)-(1L8) has exactly the fofml (M@ith

x = [z27u”]T, E(x) = L(z,u), andH (x) = (7/2)||Ax — b||3,
with A = [I, —I] andb = 0. Using this equivalence, the Bregman
iteration [1%){(16) becomes

(2" u* ) arg min L(z, u) + %Hz —u—b"|?(20)

)

pFT! (21)

b" — (zF — u").

Table 1. Experimental results (Iter denotes the number of itenatio

Cam. is the Cameraman image).

Proposed [12] [1]
Image M | Ermr Iter | Err Iter | Err Iter
Lena 5 0.1134 53 0.1180 115 0.1334 652
Lena 33 | 0.0688 23 0.0709 178 | 0.0748 379
Cam. 3 0.1331 100 | 0.1507 182 | 0.1875 1340
Cam. 13 | 0.0892 97 0.0989 196 | 0.1079 950

this requires a carefully chosen stopping criterion, beeahe solu-
tion of this constrained problem is not a good estimate.

In [12], a splitting of the variable is also used to obtain afeo-
tive function with the form

E(Z7u) :L(z,u)+a|\z—u||§; (22)

We address the minimization ii{20) using an alternating-min this is the so-called splitting-and-penalty method. Nwotihat the

imization scheme with respect toandz. The complete resulting
algorithm is summarized in Algorithm 1.

Algorithm 1 TV restoration of multilook images.

Initialization: z=0,u=0,b=0,\71,k:=1.

1: repeat

2. fort=1:t,do

3 2" :=argming Y7, (25 + €% 77 ) + 757 |z—u*—b* ||
4 u* := argming 3|ju—z* +b*||> + 2 TV(u).

5:  end for

6: bl :=bF - (zF —u")

7 =k+1

8: until |z* — z*~1||3/|z" 1|3 < 10~*

The minimization with respect te, in line 3, has closed form
in terms of the Lambert W function|[7]. However, we found ths
Newton method yields a faster solution by running just fdaara-
tions. Notice that the minimization in line 3 is in fact a sétode-
coupled scalar minimizations. For the minimization witepect to
u (line 4), which is a TV denoising problem, we run a few itevat
(typically 10) of Chambolle’s algorithm [3]. The number @fnier

minimizers of E(z, u) converge to those of (17)-(1L8) only when
approaches infinity. However, sindg(z, u) becomes severely ill-
conditioned whenv is very large, causing numerical difficulties, it
is only practical to minimizeZ(z, u) with moderate values af;
consequently, the solutions obtained are not minima of eégelar-
ized negative log-likelihood[8).

4. EXPERIMENTS

In this section we report experimental results comparimegpirfor-
mance of the proposed approach with that of the recent sfetee-

art methods in[[1] and [12]. All the experiments use synthdtita,

in the sense that the observed image is generated accood{dt
(@), wherex is a clean image. As in[12], we select the regularization
parameter\ by searching for the value leading to the lowest mean
squared error with respect to the true image. The algorighimii
tialized with the observed noisy image. The quality of thinestes

is assessed using the relative error (as.in [12]),

£ IR =
EIE

Table[d reports the results obtained using Lena and the Gamer

iterationst,, was set to one in all the experiments reported belowman as original images, for the same values of the numbew&slo

The stopping criterion (line 8) is the same a<in/[12]. Thaeate of
x produced by the algorithm is naturaly= ezk, component-wise.

Notice how the split Bregman approach converted a difficult

problem involving a non-quadratic term and a TV regulariz¢o
two simpler problems: a decoupled minimization probleme(IB)
and a TV denoising problem with a quadratic data term (line 4)

3.4. Remarks

In the case of linear constraints, the Bregman iterativequtare de-
fined in [I3) is equivalent to an augmented Lagrangian mefti@id
seel[18],[[20] for proofs. It is known that the augmented laagjian
is better conditioned that the standard Lagrangian foransesprob-
lem, thus a better numerical behavior is expectable.

TV-based image restoration under multiplicative noise veas
cently addressed in [17]. The authors apply an inverse sgelee
flow, which converges to the solution of the constrained femmlbof

minimizing TV(z) under an equality constraint on the log-likelihood;

(M in (2)) as used if[12]. In these experiments, our methodysdwa
achieves lower relative errors with fewer iterations, whempared
with the methods from [12] and[[1] (the results concerningdlyo-
rithm from [1] are those reported in[12]). It's importantgoint out
that the computational cost of each iteration of the alparibf [12]

is essentially the same as that of our algorithm.

Figure[1 shows the noisy and restored images, for the same ex-
periments reported in Tablg 1. Finally, Figilre 2 plots thelev
tion of the objective functior.(z*) and of the constraint function
lz* — u*||3 along the iterations, for the example with the Cam-
eraman image and/ = 3. Observe the extremely low value of
|lz* — u¥|3 at the final iterations, showing that, for all practical pur-
poses, the constraint (18) is satisfied.

5. CONCLUDING REMARKS

We have proposed an approach to total variation denoisingaifes
contaminated by multiplicative noise, by exploiting a sBliegman



technique. The proposed algorithm is very simple and, inethe
periments herein reported, exhibited state of the art pmdace and
speed. We are currently working on extending our methodsdio-p
lems involving linear observation operatoesd, blur) and other re-

lated noise models, such as Poisson.
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Fig. 1. Left column: observed noisy images. Right column: image[12]

estimates. First and second rows: LehA~= 5 andM = 33. Third
and fourth rows: Cameramai®/ = 3 andM = 13.
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Fig. 2. Evolution of the objective functiotL(z*) and of the con-

straint function||z* — u*||3, along the iterations of the algorithm,

for the experiment with the Cameraman image and= 3.
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