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ABSTRACT
In this paper we present an algorithm which uses adaptive
selection of low-level features for main subject detection.
The algorithm rst computes low-level features such as con-
trast and sharpness, each computed in a block-based fashion.
Next, the algorithm quanti es the usefulness of each feature
by using both statistical and geometric information measured
across blocks. Finally, the saliency of each block is deter-
mined via a weighted linear combination of the features,
where the weights are chosen based on each feature’s esti-
mated usefulness. Our results demonstrate that the adaptive
nature of this algorithm allows it to perform competitively
with other techniques, while maintaining very low computa-
tional complexity.

Index Terms— Main subject detection, low-level feature,
adaptive feature selection, block-based.

1. INTRODUCTION

Most photographers convey their ideas via one or more main
subjects in their photos. Locating the main subject in an im-
age can be very useful for a variety of image processing ap-
plications. For example, main subject detection (MSD) plays
a key role in auto cropping a photo [1]. In applications such
as image compression and unequal error protection, the abil-
ity to nd the main subject would allow one to devote more
bits to that region. Studies have also shown that MSD can be
useful for object recognition (e.g., [2]).

While a human can effortlessly identify the main subject
and other salient objects in an image, MSD is quite challeng-
ing for a computer. Researchers have proposed some meth-
ods to detect the main subject in an image. For example,
the method of Luo et al. [3] employs segmentation, per-
ceptual clustering, and then feature extraction; the features
are nally combined via a Bayesian network. Ma et al. [4]
perform MSD based on local contrast analysis followed by
fuzzy growing. A recent algorithm by Liu et al. [5] uses
three features: (1) multiscale contrast, (2) a feature based on
center surround histograms, and (3) a feature based on color
spatial distribution; these features are combined via a Con-
ditional Random Field. There also exist various algorithms
which have been designed to predict visual xation points

(e.g., [6, 7]). Such points can also be useful for locating the
main subject (see, e.g., [7]).

Although the human visual system (HVS) operates by us-
ing a variety of low-level and high-level features, we argue
that the HVS is also effective because it can adaptively de-
termine which features to use. In this paper, we build an al-
gorithm to model adaptive selection of low-level features for
MSD. Our algorithm rst computes ve low-level features for
each block of the input image. We then estimate the utility of
each feature based on statistical and geometric properties of
the collection of each feature across blocks. The ve features
are then adaptively combined (per block, based on estimated
utility) to generate a baseline saliency map. Two stages of fea-
ture re nement are then employed to generate a nal saliency
map, which is then used for MSD.

This paper is organized as follows: Section 2 describes
the features and the baseline saliency map. Section 3 ex-
plains two stages of re nement. Section 4 shows our results
and compares with other approaches. General conclusions are
provided in Section 5.

2. BASELINE SALIENCY MAP

2.1. Features

Viewing MSD as a low-level vision problem, we might
choose an object as the main subject because it is in fo-
cus, is different from the background in color, lightness or
contrast, or has more edge pixels than others. Therefore, to
perform main subject detection, we rst measure ve low-
level features for each block in the input image. The features
are lightness distance, color distance, contrast, sharpness, and
edge strength. In this section, we describe how each feature
is computed.

Let X denote the M1×M2 pixel input image and let fi(X)
denote the ith feature map where each pixel value in fi(X) de-
notes the feature value measured for the corresponding block
in X. We divide X into blocks of size m×m with 50% overlap
between neighboring blocks. Let x denote an block of X.

2.1.1. Lightness and Color Distance

Let f1(x) denote the Euclidean distance between the average
lightness of block x and the average lightness of the back-
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ground. Let f2(x) denote the Euclidean distance between the
average color of block x and the average color of the back-
ground. Here the average lightness and color of the back-
ground is taken as the average lightness and color of the im-
age. These two features are given by

f1(x) =
∣∣L̄∗(x)− L̄∗(X)

∣∣ (1)

f2(x) =
√

(ā∗(x)− ā∗(X))2 +
(
b̄∗(x)− b̄∗(X)

)2
(2)

where L̄∗, ā∗, b̄∗ denote the average L∗, a∗, b∗ measured in
the CIE 1976 (L∗, a∗, b∗) color space (CIELAB).

2.1.2. Contrast

Let f3(x) denote the RMS luminance contrast of block x
given by

f3(x) =

{
σl(x)/μl(x), μl(x) > 0
0, μl(x) = 0

(3)

where l(x) = (kx)γ denotes the luminance-valued block,
with k = 0.02874 and γ = 2.2 assuming sRGB display
conditions. The quantities σl(x) and μl(x) denote the standard
deviation and the mean of l(x), respectively.

2.1.3. Sharpness

Let f4(x) denote the relative sharpness of block x. From X,
we rst compute a sharpness map S as described in the Ap-
pendix. The feature f4(x) is then given by

f4(x) = μs =
1

m2

∑
j

sj (4)

where s is the m ×m block of S corresponding to the same
location as x in X.

2.1.4. Edge Strength

Let f5(x) denote the relative edge strength of block x. Let E
denote the binary edge map computed by running the Roberts
edge detector [8] of X. The feature f5(x) is then given by

f5(x) = μe =
1

m2

∑
j

ej (5)

where e is the m ×m block of E corresponding to the same
location as x in X.

2.1.5. Center Weight Modi cation

The main subject is usually located near the center of the im-
age, therefore each feature fi(x), i = 1, ..., 5 is modi ed as:

f̃i(x) = fi(x)fc(x) (6)

where fc(x) denotes the relative distance of block x from the
center of the image. The quantity fc(x) is given by:

fc(x) = 1−
√

(r −M1/2)2 + (c−M2/2)2√
(M1/2)2 + (M2/2)2

(7)

where r and c denote the row and column value of the top-left
pixel of x.

2.2. Adaptive feature selection based on statistics

Given all fi(X), we next compute weights which represent
the utility of each feature based on the statistic of the feature
map. Let αi denote the statistic and wi denote the weight for
each feature map fi(X). We de ne αi as:

αi = σ2
i + κi (8)

where σ2
i and κi denote, respectively, the variance and kurto-

sis of fi(X) (i.e., the variance and kurtosis of all fi(x) mea-
sured for the ith feature).

After α1, . . . , α5 are computed, these statistics are used to
determine the weight wi for each feature map fi(X) via

wi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if αi = α̃1

2/3, if αi = α̃2

1/3, if αi = α̃3

0, otherwise

, where α̃ = sort {αi} (9)

where the sorting operation is used to sort the statistics in de-
scending order. The feature with the greatest statistic is as-
signed the weight of 1, the feature with the second greatest
statistic is assigned the weight of 2/3, the feature with the
third greatest statistic is assigned the weight of 1/3, and the
other features are assigned a weight of 0.

Let RX denote the saliency map of X. RX is computed as
the weighted sum of all ve features maps

RX =
∑

i wif̃i(X)∑
i wi

(10)

where f̃i(X) is the normalized version of fi(X) given by

f̃i(X) =
fi(X)−minx∈X fi(x)

maxx∈X fi(x)−minx∈X fi(x)
.

The nal baseline saliency map that we use is R̃X which
is the normalized version of RX whose values have been
rescaled to occupy the range [0, 1].

3. SALIENCY MAP REFINEMENT

Using R̃X from above, we re ne the saliency map in two
stages to achieve better MSD.

3.1. Stage 1

3.1.1. Feature Modi cation

In this rst stage, we determine the rectangle that contains
all values of R̃X > 1.5 × mean(R̃X). Locations within this
rectangle are considered an initial guess of the main subject.

The lightness and color distance of each block x are then
recomputed in the same way as in Equation (1) and (2) except
the background is now considered as the region outside of the
rectangle. Again, all ve features are then center weight mod-
i ed as in Equation (7) except that fc(x) in this case denotes
the distance of block x relative to the center of the rectangle.
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3.1.2. Adaptive feature selection based on cluster density

For each feature map fi(X) we compute an index βi which
denotes how clustered are the high value pixels of the feature
map. βi is given by

βi =

∑
(r,c)∈Pi

√
(r0 − r)2 + (c0 − c)2

|Pi|1.25 (11)

where Pi is the set of all coordinates (r, c) corresponding to
locations in the ith feature map with values greater than 0.5.
(r0, c0) denotes the centroid coordinate of these locations.

After β1, . . . , β5 are computed, these indexes are used to
determine the weight wi for each feature map fi(X) via

wi =

⎧⎪⎨
⎪⎩

1, if βi = β̃5

β̃1−β̃4

β̃1−β̃5
, if βi = β̃4

0, otherwise

, where β̃ = sort {βi} (12)

where, as in Equation (9), the sorting operation is in descend-
ing order. The new R̃X is computed as in Equation (10) with
the new sets of feature maps and weights, and then normal-
ized to occupy the range [0, 1].

3.2. Stage 2

In the second stage, we recompute the bounding rectangle
based on the re ned R̃X computed in Stage 1. The bound-
ing rectangle is selected to be the smallest rectangle which
contains at least 75% of the values of R̃X > 2 × mean(R̃X).
Locations within this rectangle are considered a re ned guess
of the main subject.

Lightness and color distance of each block x are then
recomputed via f1(x) = − ∣∣L̄∗(x)− L̄∗(F)

∣∣ and f2(x) =
−

√
(ā∗(x)− ā∗(F))2 + (b̄∗(x)− b̄∗(F))2, respectively, where

F denotes the region of X within the rectangle. As in Stage 1,
all ve features are then center-weight modi ed based on the
center of the re ned rectangle.

Using the modi ed features, we repeat the adaptive fea-
ture selection based on cluster density as described for Stage
1. This adaptive feature selection gives rise to a nal set of
feature weights, and thus a nal saliency map R̃X. From R̃X,
we select the rectangle which contains all values of R̃X >
1.5× mean(R̃X). Locations within this rectangle are consid-
ered a nal guess of the main subject.

4. RESULTS
To assess the performance of our MSD algorithm, we use
5000 images in Image Set B from the MSRA Salient Object
Database [5]. These are 24 bits/pixel color images with sizes
ranging from 222 × 165 to 400 × 400 pixels. Each image
in this set contains only one main subject and has been con-
sistently labeled by nine human observers. The ground truth
rectangle surrounding the main subject is averaged from re-
sults of observers as described in [5].

4.1. Evaluation

We evaluate our results based on four criteria used in [5]: Pre-
cision, Recall and F-measure for region-based measurement,

and Boundary Displacement Error (BDE) for boundary-based
measurement. Precision/Recall is the ratio of correctly de-
tected salient regions to the detected/ground truth salient re-
gions. Let D and G denote the detected and ground truth
salient regions, respectively. Then Precision = A(D∩G)

A(D)

and Recall = A(D∩G)
A(G) where the A(·) operator computes

the area of the region. The overall performance measurement
F-measure is given as: Fα = (1+α)×Precision×Recall

α×Precision+Recall with α
= 0.5. The BDE is the displacement error between the bound-
aries of two rectangles (see [5]).

We compare our algorithm with three competing meth-
ods. The rst two methods come from Yu Fei Ma et. al [4]
and Tie Liu et. al in [5]. These two methods also output a
rectangle. The third one is the Saliency Toolbox presented
in [6]. Since this method outputs a saliency map, we draw a
rectangle which contains 95% of the xation points accord-
ing to [5]. We also compare with results from using the set
of optimized weights that we set in [9] for our ve features to
see the effect of adaptive vs. xed feature selection.

Precision Recall F-Measure BDE
Yu Fei Ma et al. 0.55 0.93 0.62 40.6
Saliency Toolbox 0.66 0.83 0.68 33.4

Tie Liu et al. 0.83 0.82 0.80 21.0
Using xed weights 0.67 0.85 0.68 28.5

Our algorithm 0.79 0.81 0.78 22.2

Table 1. Comparison of different MSD algorithms

Table 4.1 shows results of these three methods and our
algorithm evaluated using four criteria described above. Note
that Recall is not necessarily an appropriate measure for
MSD, since a 100% Recall can be easily obtained by se-
lecting the whole image. The main challenge in MSD is to
simultaneously obtain high Precision and F-measure, and low
BDE. As can be seen from this table, on these three criteria,
our algorithm is the second best. Even though our algorithm
does not perform as well as the method of Tie Liu et al.,
our results are very competitive and we believe that we have
an advantage in computational ef ciency since we use only
low-level features. These results also demonstrate that using
adaptive feature selection brings great improvement to our
algorithm vs. using the xed weights from [9].

4.2. Representative Results

Figure 1 shows several examples with ground truth rectangles,
our baseline and re ned saliency maps, and nal MSD rectan-
gles.1 Notice that the re ned saliency map in (d) demonstrates
a marked improvement over the baseline saliency map in (c).
This re nement is a crucial step for MSD. Our detection re-
sults on other images in Figure 2 show that our approach pro-
duces quite good results. However, we also show in Figure

1Code from [4] and [5] are not available for us to make qualitative com-
parisons
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(a) (b) (c) (d) (e) 

Fig. 1. Process of MSD and comparison with ground truth.
(a) Original image. (b) Ground truth. (c) Our baseline map.
(d) Our re ned map. (e) Our MSD.

2 some failure cases to emphasize that MSD remains a chal-
lenging task which may require contextual and/or higher-level
analyses.

5. CONCLUSION

In this paper, we presented an algorithm which adaptively
uses low-level features for main subject detection. Our results
demonstrate that relatively simple low-level features can be
effective for MSD if these features are combined in an adap-
tive and interactive fashion (i.e., using adaptive weights and
multiple stages of re nement). We believe that such adap-
tive feature selection can be a useful strategy for a variety of
image processing applications.

6. APPENDIX

To measure local sharpness, we employ a block-based method
which uses the slope of the image’s local power spectrum and
the local kurtosis of a whitened version of the image. The
following steps summarize this sharpness metric.

For each 16× 16 block:

1. Let Δ = slope of power spectrum.

2. Let b1 = 1− 1
1 + e2.3Δ+5.8

.

3. Let b2 = kurtosis of the block in the whitened image.
(the whitened image is obtained by ltering the original
image with a radially symmetric lter whose magnitude
spectrum increases proportionally with log frequency).

4. The relative sharpness value of the block is then given
by

√
b2
1 + b2

2.

Note that following Step 3 the set of {b2} is normalized to
span the range [0, 1]. Similarly the sharpness values computed
in Step 4 are normalized to span the range [0, 1].

 

 

 

 

 

Fig. 2. Our detection results on some other images. Some
failure cases are shown in the last row.
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