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ABSTRACT object of interest from an image but also simultaneouslisters the

) . ) . prior shape on the image data, allowing further semantityaiseto
This paper presents a new image segmentation frameworkhwhig,q performed on the extracted object.

employs a shape prior in the form of an edge strength fundtion

introduce a higher-level influence on the segmentationgamcWe

formulate segmentation as the minimization of three califlec- 2. REPRESENTATION OF THE PRIOR SHAPE
tionals, respectively, defining three procesgesor-guided segmen-

tation, shape feature extraction andlocal deformation estimation.

Particularly, the shape feature extraction process is amgehof es-
timating an edge strength function from the evolving objecfion.
The local deformation estimation process uses this fundtiode-
termine a meaningful correspondence between a given pribttee
evolving object region, and the deformation map estimataéturn
supervises the segmentation by enforcing the evolvingcobjeund-

ary towards the prior shape. 1 / <p|vv|2 + %) dx Q)
Q

In our work, we represent the shape knowledge by a smooth edge
indicator functionv called theedge strength function [1, 14] which
is recently applied in prior-guided segmentation [6] in raliah the
shape variability globally.

The edge strength functianis the minimizer of

. . . . . 2
Index Terms— prior-based image segmentation, registration,

variational methods
where Q) C R? is an open, bounded and connected domain (the

shape domain) with a boundafy, v varies betweerd and1 (s.t.
1. INTRODUCTION v|p = 0), and asp — 0, v — 1 everywhere except alorig Thus,
the parametep may be interpreted as the blurring radius. In [15]
The goal of segmentation is partitioning an image into cehere-  the connections among edge strength function, curve éenland

gions that are likely to correspond to objects which are iedag diffused distance transform have been shown (see Fig. 1).
Finding region boundaries accurately becomes partigutddlleng-

ing when the corrupting influences due to missing regiongjgba
occlusions and noise appear in images. Recent works, ingud
[5,6, 7, 8,11, 13, 16], resolve these ambiguities by intéggdow-
level image features with high-level shape information. thAthe
exception of [7], these works represent prior shape glgbatl [7],
Hong et al. present an alternative formulation which takés ac-
count a local deformation model to constrain the shape ofbé/-
ing contour. The model captures a different appearanceedsitfect
of interest with ease by accordingly warping the referertzaps.
This, in a certain extent, provides an advantage over tHeglod-
els.

In this paper, we employ the local deformation model of Hong
et al. [7] in a new framework for prior-guided image segméata
Specifically, our work differs from [7] in two aspects. Thesfidif-
ference is the way we formulate the segmentation energies
expressed as the minimization of three coupled functiotkediming
three processes that respectively accounpifar-guided segmenta-
tion, shape feature extraction andlocal deformation estimation. The
second difference is the way we represent the shape itsethedex- (b) (©)
perimental results demonstrate, our framework not onlyaexs the

Fig. 1. The edge strength functianreproduced using the method
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3. ANALYSIS OF SHAPES USING A LOCAL
DEFORMATION MODEL

Shape matching plays a key role when analyzing the siméarite-
tween two given shapes by establishing a correspondencg’], In
Hong et al. suggest a local deformation model for shape rmajch
We adopt it in our formulation.

Let v, andv2 denote the edge strength functions estimated from
two silhouettesS; andSs, respectively. Matching between the given
shapes is estimated by minimizing the functional

Ematch(h) = Efzd(h) + ﬁEreg(h) (2)

with respect to the unknown deformation function Q@ — R?. The
first term in the energys;q4(h) measures the similarity between
the reference edge strength function and the template edgeyth sl
function which is transformed under the displacement vefat h. HH

In particular, the similarity term is defined as
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where(2 denotes the domain in whiah andwvs are defined. While
this term provides a driving force for the registration, tegular- ~ Fig. 2. Matching example. (top rowgow and cat silhouettes
ization termE,.., (h) forces the deformation fieltl to be smooth.  (adapted from [2]). (middle) Corresponding edge strengtttfions
The relative importance between smoothing and similaeitynt is estimated Wltho = 4. (bottom) Estimated deformation vector field
determined by the parametgr and the matching result.

In literature, several approaches are proposed to regeléne
deformation fieldh. In our formulation, following the approach
in [7], we employ the linear elasticity model proposed in (&
ing a semi-implicit scheme for the time variable where threnteat
the center pixel are treated implicitly while the remaintegms are
treated explicitly:

4. SEGMENTATION FRAMEWORK

In the previous section, a shape matching framework is dpeel
by using a local deformation model. Now we will discuss hovg th
model is employed within a segmentation framework to impase
priori shape information about an object of interest on thgaing

) segmentation process.
Ereg(h) = /Q<g Z (&;ihj " 8zjhi)2 i %(V ) h)2> dz (4) We formulate image segmentation by minimization of thrae-co

= pled functionals 1, 2, and /3 defined as follows:

E h = FE FEshape h ) > ) 8
where d,; denotes the partial derivative with respectatp, and El(d)' ) _ ECV(d)) Tt Banape(9IR), 1 20 (9)
A, i > 0 are the Lamé constants that reflect material properties of 2(vle) = seature(v]9) , ©)
an elastic body. This model cannot handle large deformstiand Es(hlv,¢) = Ematen(hlv,¢) . (10)
hence we assume that a global registration is initiallyqrentd.
The deformation fieldh minimizing (2) formally satisfies the
Euler-Lagrange equation

Each functional has a distinct role in the overall proceske T
first functional £, is an extended version of the functional in [4]

Eov(6) = / (f(x) — e1)? H(¢(x))dx

% — _Ematch — _ <8Efid +ﬂaE7‘eg) (5) Q
ot Oh Oh oh
+ [(1@) = P = Hota))ds+ [ [VH6@)IE @)
here “ “
W with an additional prior shape term
8Efid _
o = (v2(z + h(z)) —vi(z)) Voo (z + h(z)) , (6) Eanape(6]h) = / (H(6(2)) — Tz + h(z)))? do (12)
O0FEreq Jy— _ . Q2
oh - (uV ht Qv v h)) ' ™ and mainly accounts for the prior-guided segmentation.

From computational point of view the functional (11), which
In Fig. 2, we present an example matching result obtainetdy t is a well-known approximation for the Mumford-Shah segraent
proposed method. As it can be clearly seen, the resultirigtraion  tion model [9], follows a level-set based curve evolutionniala-
process determines a meaningful correspondence betwegivién  tion [10]. In (11),¢ represents a level set function whose zero-level
silhouettes. line corresponds to the contour segmenting the input infade is



a Heaviside function;; andc, respectively denote the average gray Algorithm 1 The proposed segmentation algorithm

values of foreground and background regions, and\> > 0 and 1: Compute the edge strength function representing the given
w > 0 are fixed parameters. The prior shape term (12) is similar to  binary templatel”

the one used in [12] and constrains the shape of the evolaireg f  2: Initialize the variables withp® = ¢o, v° = v, h° =0
ground/object regions by making use of a binary temglatgven a 3: while stopping criteria is not reachetb

priori. Mainly, it measures the difference in the areas @f ¢lolv- 4:  Transform the templat& under the currently estimated de-
ing object region represented BY(¢) and the priofl” transformed formation fieldh.

under the deformatioh. As a result, while (11) leads to an image 5.  Update the level set function according to (14) by taking
force that attracts the zero-level curve of the evolvingleet func- the transformed template into account

tion ¢ to object boundaries, the prior term enforces the zerd-leve 6:  Update the edge strength functienby iterating (15) 500
curve towards the given templateunder transformation. times

The second functionakll; is utilized for extracting shape fea- 7:  Update the deformation fieltd by iterating (5) 200 times
tures from the image regarding the object to be segmentedl@and 8: end while

fined by
_ 2 2
Efeature(vlg) = a/ﬂv IVH(9)I"dw to v leads to the evolution equation
_ 2
+ 1/ <p|w|2+u) de . (13) ,
2 Q P v E2 Efeatur'e 2 2a|VH(¢)| v (U — 1)
A e M
In fact, (13) is a modified version of the functional in [15] erk (15)

the fidelity term is excluded and the gray value image is gala

with H(¢). As a result, the edge strength functiordenoting the

minimizer of (13) represents the shape of the evolving dbsggion.
The third functionalF’s corresponds to the matching energy de-

Finally, the evolution equation fok obtained from the third
functional is similar to (5) where: is replaced withyr, andv;, with
v. The whole minimization procedure of the proposed fram&isr

fined in (2) and responsible for estimation of the local defation. Zﬁumemuar::izlfﬁ(;r:)\g?;?g:’]rgréﬁlln—‘:hEe e_);pgnrizenngsrhg;z giﬂgg%’
With fixed v, minimizing this functional with respect to the unknown . ! 2 s . 9-
variableh establishes a correspondence between the evolving object In Fig. 3, we present sample segmentation results on vamiatis

region and the prior shape that are respectively represdnytéhe  Ural images. In order to demonstrate the performance ofraond-
edge strength functionsandvr. work and to illustrate what it is gained by introducing priirape

The functionalsE; -Es are coupled in the sense that the defor- knowledge, we compare the results of our method with thoskeof

mation field found by (10) determines the level sgt the level ~ Model in [4] using the same values for the common parametefs a
set¢ estimated by (8) specifies the edge strength functiocandv the same initial conditions. Note that setting to zero and exclud-
defines the deformation field. These functionals work jointly to ing E2 and Es from computations reduce our formulation to the
partition an image into object vs. background regions. model in [4], yielding a model that does not take prior shafie i
Our strategy is to alternate between these functionals wieen account. In all experiments, we set= 4, o = 500, 8 = 0.01,
apply the gradient descent. We fix the deformation fieldhen we A = 0, 2 = 1 unless stated otherwise, and assume that a global reg-
try to minimize the first functionakZ;, and determine the level set istration is initially performed. An advantage of our franwek is
6. Similarly, we fix the level set functios when we try to mini- that it _performs image segmentation v_wth snmultaneou_sg_ysterlng
mize the second functiondl,, and estimate the evolving shape rep- the prior shape on the image data. Fig. 4 presents a jointesgigm
resented by the edge strength function After that, with fixedy ~ tion and registration result on a partially occluded horsage. The
we estimate the deformation field Note that we could have com- initial zero-level curve is broken into mea_ningful p_artsaald, tails,
bined these functionals and have started with it, inteipgeit as a €9, etc.) and transformed under the estimated displateveetor
general framework. The main disadvantage of such a forioulat field accordingly.
is that when we apply the gradient descent, the deformatbah i
depends on not only the edge strength functions, but alsbitiaey
silhouettes, which may yield inaccurate correspondences.
We now apply gradient descent to the function&ls E5 to ob-
tain segmentation. Minimizing the first functional (8) withspect
to ¢ leads to the following evolution equation: We have presented a new prior-shape based image segmentatio
framework using the edge strength function within a locdbdea-
tion model. The edge strength function has been previousgy in
a—¢ T B prior-guided segmentation with a global deformation mod€he
prior shape information explicitly imposes higher-levefliences
with on the ongoing segmentation process, yielding robustngssst
undesirable conditions such as partial occlusions ancenokur-
Eev 5(o) {(f —a) = (f-c)?—uV- (E)} thermore, the local deformation model determines a meéuling
o Vol )] ' correspondence between a given template and the evolviegtob
FEshape region, and leads to joint registration results. Due to jbistly
TJ = 20(6(2)) (H(¢(2)) = T(z + h(z))) - performed registration process, our framework allows tdopm
additional semantic analysis as well when a shape analgsieed
With fixed ¢, minimizing the second functional (9) with respect out beforehand.

5. SUMMARY

ot 0

8¢ o El _ <ECV Eshape) (14)
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Fig. 3. Segmenting corrupted hand images with partial occlusamussignificant amount of noise. (first column) Input imagésp-image
is from [7]. (second) Unregistered prior shapes superimgam the input images (initial zero-level curves). (thigBgmentation results
without prior shape information. (fourth) Final segmeimtiatresults. (fifth) Deformed grids under the estimated ldisgment vector fields.
(the parameters age; = 17500, 8 = 0.025 (top row), 1 = 12500 (bottom row) andx = 20000).

Fig. 4. Analysis of the registration process. Different colore ar

used for different parts of the segmenting contour in ordeshtow

how meaningful the obtained correspondences are (the pteesn

arep = 18000 andp: = 20000).
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