
PRECISE HEAD SEGMENTATION ON ARBITRARY BACKGROUNDS

David C. Schneider, Benjamin Prestele, Peter Eisert

Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institut
Einsteinufer 37, 10587 Berlin, Germany

{david.schneider, benjamin.prestele, peter.eisert}@hhi.fraunhofer.de

ABSTRACT

We propose a method for segmentation of frontal human portraits
from arbitrary unknown backgrounds. Semantic information is used
to project the face into a normalized reference frame. A shape model
learned from a set of manually segmented faces is used to compute
a rough initial segmentation using a fast iterative algorithm. The
rough initial cutout is refined with a boundary based algorithm called
“Cluster Cutting”. Cluster Cutting uses a cost function derived from
clustering pixels along the normal of the initial segmentation path
with a tree-building algorithm. The result can be refined by the user
with an interactive variant of the same algorithm.

1. INTRODUCTION AND RELATED WORK

We propose a method for the segmentation of frontal human portraits
including hair from arbitrary unknown backgrounds. Most segmen-
tation methods require the user to provide some form of seed and
allow for interactive and iterative refinement of the initial segmen-
tation result. Our approach exploits its limitation to a narrow class
of objects—frontal human portraits—to determine a seed automat-
ically. An initial segmentation is computed and the result can be
refined interactively if necessary. Even on images hard to segment,
typically very few clicks are sufficient to obtain a good cutout. In
the best case, no user interaction is required at all. The algorithm
comprises two stages: In the first, a rough, shape-constrained seg-
mentation is computed. In the second stage the result of the first is
refined using a technique we call “Cluster Cutting”. In the super-
vised refinement stage an interactive variant of the same algorithm
is employed.

The algorithm was developed as part of a larger system for pro-
ducing cut-out animations from user-provided photos. Therefore it
is designed to robustly handle arbitrary image backgrounds and low-
quality content, e.g. from mobile phones or webcams.

Literature on segmentation is too extensive to review compre-
hensively. Roughly, there are two primary types of interactive seg-
mentation schemes, region and boundary based. The former are, for
example, initialized with regions that label pixels as certain fore-
and background [1] or with a single bounding box enclosing the full
foreground [2]. A statistical model (e.g. of color) is derived from
the samples. The segmentation is then computed by minimizing an
error function that penalizes cutting regions homogeneous with re-
spect to the model. For a class of error functions investigated in [3],
the optimization can be computed using graph cuts. While little user
interaction is required, region based methods do not provide precise
control over the segmentation boundary. As color and gradient are
not always sufficient for a plausible segmentation, several attempts
were made to integrate shape priors [4, 5, 6, 7]. Our algorithm’s
first stage is region-based and uses a shape model. However, the

limited variance of head shapes and the use of a special coordinate
system allow us to employ a simple one-dimensional optimization
rather than computationally expensive graph cuts.

Boundary based segmentation methods require the user to
roughly trace the full object contour [8, 9, 10]. The path is then
“snapped” to nearby edges. Recently “Boundary Snapping” [11]
was proposed, where the user specifies only a few points which
accurately lie on the object boundary. The segmentation is com-
puted under the assumption that the vertical profile along the object
boundary matches an interpolation between the vertical profiles
at consecutive control points. The amount of user interaction is
thus reduced in comparison to full boundary tracing but the object
contour is required to change smoothly between control points.
Our refinement algorithm employed in the second stage adopts the
idea of using few control points and optimizing the segmentation
path in between, as well as the scheme of working in a channel
of normals around an initial segmentation boundary. However, a
different approach for optimizing the segmentation in this channel
is used. A generic segmentation approach combining a region-based
initialization with a boundary based refinement is given by [12].

2. ROUGH SEGMENTATION

While the segmentation computed in the rough stage need not be pre-
cise, it is crucial that it does not deviate extremely from the depicted
head. This is achieved by restricting the segmentation boundary to
a shape space learned from 40 manually segmented images. The re-
striction of the shape has a stabilizing effect in image regions that
are difficult to separate by color.

2.1. Polar reference frame

The entire rough segmentation is performed on a face-specific polar
projection of the image. The center of the polar reference frame is
the midpoint of the line segment connecting the eyes. Locating eyes
is an extensive research topic to which we do not wish to contribute
in this work; we use a standard Adaboost based detector (see [13],
[14]). The zero-angle axis points in the direction of the right eye,
hence normalizing face rotation. The eye distance is used to normal-
ize scale. The image is resampled in the polar frame with an angular
resolution A of 420 steps and a radial resolution R of 400 steps us-
ing bilinear interpolation. Fig. 1 (b) shows an example of an image
projected into the reference frame.

Normalizing rotation and scale by working in the polar frame
has several advantages: All subsequent processing in the rough seg-
mentation stage is performed on images of the same size (i.e. A×R
pixels); computation time is thus controllable despite of varying in-
put sizes. Moreover, a common reference frame simplifies compu-
tation of probabilistic information from a set of training images and

 gmm−RGB gmm−Lab knn−RGB knn−Lab Svm−Lab Svm−RGB Svm−RgbLab
0.04

0.045

0.05

0.055

0.06

0.065

Method

E
rr

or
Color classification performance

with morphological closing
without morphological closing

Fig. 2. Results of the color model type evaluation. Error measured
as fraction of misclassified pixels.

relating this information to a new image. Finally, it facilitates the
representation of a segmentation boundary as a fixed-length, one di-
mensional vector of radii, [r1 . . . rA]T which greatly simplifies the
shape-constrained segmentation process described in section 2.3.

2.2. Color modelling

Rough segmentation is color-based. The color model is learned from
the image. Let Lθ,r ∈ {′fg′, ′bg′} be the label (or class) of a pixel
at coordinates (θ, r) in a polar face image. Treating this as a random
variable, a prior probability distribution p(Lθ,r) of Lθ,r is computed
from a set of manually segmented frontal face images projected into
the polar reference frame. A statistical polar trimap of foreground,
background and uncertain areas is determined by thresholding label
probabilities.

When an image is segmented, two color models are learned
from the certain background and certain foreground regions of
the precomputed trimap. After evaluating several parametric and
non-parametric model types empirically we chose Gaussian Mixture
Models (GMMs) over L*a*b color space; the evaluation is described
below. Denoting the color of a pixel at (θ, r) by cθ,r the GMMs
give us the conditional probabilities p(cθ,r|Lθ,r) for both possible
values of Lθ,r . Hence the posterior probability of a pixel’s label is
given by applying Bayes theorem as

p(Lθ,r|cθ,r) =
p(cθ,r|Lθ,r) · p(Lθ,r)

p(cθ,r)
(1)

with

p(cθ,r) = p(cθ,r|′fg′θ,r)p(
′fg′θ,r)

+ p(cθ,r|′bg′)p(′bg′θ,r) (2)

To avoid clutter in notation we use pθ,r := p(Lθ,r|cθ,r) for the pos-
terior of eq. 1 in the following.

To select a color model we tested several model types, paramet-
ric and non-parametric, on a set of 40 highly diverse images that
were segmented manually into a head region (with hair and throat)
and a background. Each tested model type yields two numeric values
for each pixel indicating the degree to which the pixel belongs to the
foreground and to the background class; for some but not all models
these are probabilities. A binary segmentation map was obtained by
taking the larger value as the winner. The map was then compared
to the ground truth. In total, seven model types were tested: Gaus-
sian Mixture Models (GMMs) in RGB (1) as well as L*a*b color
space (2), both normalized; k-nearest-neighbor models in normal-
ized RGB (3) and L*a*b color space (4). Support vector machine
(SVM) classification in normalized RGB (5) and L*a*b space (6) as
well as in a combined, six-dimensional RGB+L*a*b space (7).

Fig. 2 shows the results. A second evaluation was computed
after a morphological refinement of the class maps. In conclusion,

the choice of model has no large effect on the color classification
performance. GMMs in L*a*b color space perform best and have
a reasonably small variance. They have the additional advantage of
allowing a direct probabilistic treatment of color as described above.

2.3. Shape-constrained segmentation

Rough segmentation uses a linear shape model obtained from a set
of manually segmented images. To build the model, the segmenta-
tion map of each image is projected into the polar reference frame.
There, its boundary (r1, θ1), (r2, θ2), . . . , (rn, θn) is determined.
Assuming that the angular components θi are strictly and regularly
increasing—i.e. θi = 2π

R
i where R is the angular resolution of the

polar reference frame—the boundary can be represented as a single
vector of radii [r1 . . . rA]T that has the same length for all images.
This entails a simplification of the boundary shape which is, how-
ever, tolerable for head shapes. From the boundaries of the man-
ual segmentations a linear subspace model is computed by Princi-
pal Component Analysis with mean vector µ and principal compo-
nent matrix P. A subspace of six eigenvectors is used. To cover
more variation, rotated and scaled copies of the training examples
are included in the training set. Note that in the polar frame scal-
ing is achieved by simply adding a constant to the ri while rotation
amounts to a circular shift of elements in the radius vector.

The shape-constrained segmentation process is iterative. The
current segmentation boundary is always represented as a vector of
radii q = [r1 . . . rA]T as described above. For a pixel at location
(θ, r) this implies the labeling

Lθ,r|q =

{
′fg′ iff r ≤ qθ
′bg′ otherwise

. (3)

Now let f be a normalized histogram describing the distribution of
foreground posterior probabilities in the foreground of the image
given segmentation q. Let similarly be b the normalized histogram
of foreground probabilities in the background implied by q. Seg-
mentation is performed by maximizing the χ2-distance between f
and b defined as

χ2 =

K∑
i=1

(fi − bi)
2

fi + bi
(4)

while restraining the boundary to the shape model; K is the num-
ber of histogram bins. In each iteration the elements of q—i.e. the
radii of the segmentation boundary—are updated in order to increase
χ2. Therefore it is not necessary to recompute the full histograms.
Rather a pixel (θ, qθ) on the boundary is updated according to the
rule

(θ, qθ)←

{
(θ, qθ + 1) if f [θ, qθ + 1] > b[θ, qθ + 1]

(θ, qθ − 1) if f [θ, qθ − 1] < b[θ, qθ − 1]
(5)

where f [θ, r] and b[θ, r] are the histogram values for the pixels in the
brackets. Also, the histograms can be updated along with the local
changes. Call this a maximization step. After several maximization
steps the changed boundary q is projected into the shape space by

q← µ + P
(
P+ (q− µ)

)
(6)

denoting by (·)+ the pseudo-inverse of a matrix. Call this a pro-
jection step. After each projection step the histograms have to be
updated. Maximization and projection steps are repeated until con-
vergence, i.e. until the change of χ2 falls below a threshold. The
boundary used for initializing the optimization is φ.

Fig. 1. (a) Input image. (b) Polar projection. (c) Rough segmentation boundary, rotation normalized. (d) Result after cluster cutting. (e) Result
after one correction (clicked location indicated by green dot).

Fig. 3. Image channel (top) and corresponding cost function (bot-
tom) used in Cluster Cutting.

The effect of the projection step is to constrain the segmenta-
tion path to the shape space learned from the manual segmentations.
Thereby the initial segmentation always is a plausible head shape.
Also, the projection step can bring parts of the path that pushed into
a local similarity of foreground and background during the maxi-
mization step back “in line”. An example of a rough segmentation is
given in fig. 1 (c).

3. BOUNDARY REFINEMENT WITH
“CLUSTER CUTTING”

To find a precise segmentation an automatic boundary-based method
is applied using the result of the rough segmentation as input. Clus-
ter Cutting is easily extended into an interactive segmentation tool
that is finally used to correct remaining errors in the automatic seg-
mentation.

As the algorithm requires an initial outline of the area to segment
the rough segmentation boundary described in the previous section
is projected back into the Euclidean frame and approximated by a
natural cubic spline. The image is sampled at M points along each
of N fixed-length, regularly distributed normals of that curve. This
yields a rectangular projection of an M pixel wide channel around
the rough segmentation boundary; see fig. 3.

The cost-function used by cluster-cutting is computed individ-
ually on the pixels along each normal. Therefore, the pixels along
the normal are clustered using an iterative tree-building algorithm.
The algorithm maintains a list T1, . . . ,TM of trees represented by
their roots. Initially the list contains M one-element trees each rep-
resenting one pixel. Let v(Ti) be the color value of a tree. Initially,
v(Ti) is set to the color vector of the pixel represented by the node
in normalized L*a*b space. In each iteration, two trees Ti and Tj of
the list satisfying two conditions are merged: Ti and Tj are adjacent
(i.e. |j − i| = 1) and the color similarity score

α := ||v(Ti)− v(Tj)||+ λ||p(v(Ti))− p(v(Ti))|| (7)

is minimal over all pairs satisfying the first condition. Here p(·) is

a color probability according to the model described in section 2.2
and the factor λ weights the influence of the color model against
plain L*a*b color distance. Merged trees are replaced in the list by
the common root T∗i whose children they become. The color value
of the new root is

v(T∗i) =
v(Ti)

s(Ti)
+
v(Tj)

s(Tj)
(8)

where s(·) denotes the number of leafs of a tree (i.e. the number of
pixels it represents). The process is repeated until a single tree is left
in the list.

Note that each of the M − 1 non-leaf nodes in the tree corre-
sponds with a two-partition of the pixels due to the adjacency con-
dition. Hence each partition can be rated according to its α value
defined in eq. 7. So when all trees have been built, an M − 1 × N
cost map of the α values in the segmentation channel can be set up;
see fig. 3. A segmentation path is finally determined by computing
a minimal cost through the cost map using dynamic programming
(DP). To obtain a closed contour, the path must begin and end at
the same vertical offset in the cost map which is not guaranteed by
straighforward DP. Therefore, a common heuristic to close DP paths
is used: DP is computed on several horizontally concatenated copies
of the cost map. If closure fails, Dijkstra’s shortest path algorithm
is used as a fallback. Fig. 1 (d) shows a result of automatic cluster
cutting.

Finally, for interactive refinement, the user clicks on a point he
wants the segmentation path to pass through. The column of the cost
map containing this point is determined and the cost map is set to
−∞ at all elements of the column except for the one clicked thereby
forcing the path to pass through that pixel. The segmentation path is
recomputed and displayed. Fig. 1 (e) shows a result of an interactive
correction. Fig. 4 shows additional results, including those of the
rough stage.

4. CONCLUSION & DISCUSSION

The proposed method was tested on a database of everyday frontal
portraits with widely varying backgrounds. Generally, only a few
user clicks were necessary to get a good segmentation of the face. In
some cases no correction is required at all; examples are also shown
in fig. 4.

The overall strategy of the algorithms can be summed up as fol-
lows: Limiting the segmentation problem to frontal human portraits
allows us to use a special, semantically motivated coordinate frame.
In this frame the problem is essentially one-dimensional in the sense
that the segmentation boundary can be described as a function of
polar angle. Therefore, a simple optimization can be used in the

Fig. 4. Exemplary results of the proposed segmentation method. Rough segmentation results are plotted in the original images. The two
examples on the right required user interaction as indicated by the green dots.

first stage and the second stage can be constructed as a one dimen-
sional path search given an appropriate cost function. Dividing the
computation into a rough and a fine stage allows us to impose strict
shape constraints in the first stage. Finally, the key idea behind the
fine segmentation algorithm is to allow for precise user control while
still enabling a fully automatic “first guess”.

The approach is currently restricted to frontal views primarily
due to the construction of the shape model and the use of eye detec-
tion. In principle a shape model could be set up for other views as
well. Also, the result depends on eye detection which can, however,
be replaced by an additional user interaction if necessary. As many
other algorithms that rely on color models, our method requires the
image to be principally color-separable. However, the shape model
has a stabilizing effect if the color similarities between foreground
and background are local.

Regarding future work, we want to further improve the shape
model and the way it is fit to the image during rough segmentation.
Also, segmentation is currently treated as a binary problem. Incor-
porating alpha matting to create a smooth transition between fore-
ground and background should greatly improve the quality of the
results; see, for example, the Bayesian method proposed in [15].

5. REFERENCES

[1] Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal bound-
ary & region segmentation of objects in n-d images,” in Eighth IEEE
International Conference on Computer Vision, 2001.

[2] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake, “Grab-
cut: Interactive foreground extraction using iterated graph cuts,” ACM
Transactions on Graphics, vol. 23, pp. 309 – 314, 2004.

[3] Vladimir Kolmogorov and Ramin Zabih, “What energy functions can
be minimized via graph cuts?,” IEEE Transactions On Pattern Analysis
And Machine Intelligence, vol. 26, pp. 147–159, 2004.

[4] Hang Chang, Qing Yang, and B. Parvin, “A bayesian approach for im-

age segmentation with shape priors,” in IEEE Conference on Computer
Vision and Pattern Recognition CVPR 2008, 2008.

[5] Nhat Vu and B.S. Manjunath, “Shape prior segmentation of multiple
objects with graph cuts,” in IEEE Conference on Computer Vision and
Pattern Recognition CVPR 2008, 2008.

[6] James Malcolm, Yogesh Rathi, and Allen Tannenbaum, “Graph cut
segmentation with nonlinear shape priors,” in IEEE International Con-
ference on Image Processing, 2007.

[7] D. Freedman and Tao Zhang, “Interactive graph cut based segmenta-
tion with shape priors,” in IEEE Conference on Computer Vision and
Pattern Recognition CVPR 2005, 2005.

[8] Patrick Pérez, Andrew Blake, and Michel Gangnet, “JetStream: Proba-
bilistic contour extraction with particles,” in Proceedings of the Eighth
International Conference On Computer Vision (ICCV-01), 2001.

[9] Eric N. Mortensen and William A. Barrett, “Intelligent scissors for im-
age composition,” in SIGGRAPH ’95: Proceedings of the 22nd annual
conference on Computer graphics and interactive techniques, 1995.

[10] Michael Gleicher, “Image snapping,” in SIGGRAPH ’95: Proceedings
of the 22nd annual conference on Computer graphics and interactive
techniques, 1995.

[11] E. Zadicario, S. Avidan, A. Shmueli, and D. Cohen-Or, “Boundary
snapping for robust image cutouts,” in IEEE Conference on Computer
Vision and Pattern Recognition CVPR 2008, 2008.

[12] Yin Li, Jian Sun, Chi-Keung Tang, and Heung-Yeung Shum, “Lazy
snapping,” in SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, 2004.

[13] Yoav Freund and Robert E. Schapire, “A Decision-Theoretic General-
ization of On-Line Learning and an Application to Boosting,” Journal
of Computer and System Sciences, vol. 55, pp. 119 – 139, 1997.

[14] Paul Viola and Michael Jones, “Rapid Object Detection using a
Boosted Cascade of Simple Features,” in IEEE Conference on Com-
puter Vision and Pattern Recognition CVPR, 2001.

[15] Yung-Yu Chuang, Brian Curless, David H. Salesin, and Richard
Szeliski, “A Bayesian Approach to Digital Matting,” in Proceedings of
CVPR, 2001.

