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ABSTRACT to take advantage of the potential sparsenesibbinary images

. . ._under certain transformations.
Discrete tomography (DT) focuses on the reconstruction of a dis-

crete valued image from few projection angles. Prior knowledge In practice, while in most cases images to be reconstructed are
about the image can greatly increase the quality of the reconstructét binary (or even discrete valued), DT can be applied to scenar-
image, especially when a small number of projections are availabléos where the target image can be segmented into high contrast re-
In this paper, we show that DT can be formulated as a sparse sign@ions. For example, in computed tomography (CT), researchers are
recovery problem. By using a well designed dictionary, it is possidinterested in reconstructing images from fewer X-ray projection an-
ble to represent a binary image with very few coefficients. Startingles in order to reduce the radiation dose for the patients. In an
from this concept, we modify the reweigh#&dalgorithm to achieve —angiography only two types of regions need to be considered: blood
a sparse solution and preserve the binary property of image. Preessels enhanced by a radio-opaque contrast agent and the “back-
liminary simulation results show that our algorithm can outperformground” which represents the rest of body [2]. Another example
conventional continuous reconstruction methods in cases when vel§ geophysical computed tomography. The physical characteristics
limited data is available. between different underground layers can change dramatically. In
contrast to medical tomography where the measurements are taken
from all viewing angles, the region of interest is scanned from very
limited angles [9, 10]. Other applications can be found in different
fields: chromosome analysis, transmission electron microscope [3],
1. INTRODUCTION and experimental fluid dynamics [7].

Index Terms— Discrete tomography, sparse signal recovery,
compressive sensing

Discrete Tomography (DT) requires reconstructing an image from In this paper we propose to solve the DT in the transform do-

very few ro'egtioﬁ gn les w(i]th each pixel in thegima e (?onsist-main by exploiting sparseness characteristics. We expect this trans-
ingryof onIS ajsmall nun%,ber’ of discrete Salues [1] WhiI% in many form domain sparseness to be a better model for typical images of
tomographic reconstruction problems the target image does not ne|(g1_terest than spatial domain sparseness (which would involve assum-

essarily have discrete intensity values, using prior knowledge to rend that typical images contain very few non-zero pixels). Specifi-

construct a discrete-valued approximation can lead to better quali gally, we observe that binary images with few discontinuities along

especially if the number of measurements is very limited [2]. Wheni e_mdy axis ha_ve a sparse re_prese_ntatlon as linear combinations of

L . unit step functions. Every binary image can then be represented

the number of projection angles is small, the number of unknowrlln terms of basis in this dictionary multiplied by coefficient vector
variables required for reconstruction far exceeds the amount of mea y P Y .

u; € {0,—1,1}. Note that step functions can also be applied

sured data. Thus, a DT reconstruction involves finding a discrete va[—l’ . . : ;
. - . : -~ 10 approximate general discrete valued images, for which a sparse
ued solution to a highly under determined linear system, for which a

unique solution is unlikely to exist. approximation will lead to piecewise constant reconstruction.
Many algorithms have been proposed to solve the DT problem. For image reconstruction, we use LP to search for a sparse so-
In combinatorics, researchers are interested in reconstructing a sgation by minimizing ||ul|: rather than|ul|o. With LP we can also
cial class of imagedv-convex objects, with only horizontal, vertical relax the integer constraint; € {0,—1,1}, and instead find so-
and diagonal projection angles. Herman and Kuba gave comprédtions such thau; € [—1,1]. We modify the reweighed min-
hensive reviews in their books [1, 3]. Another approach is to starimization algorithm [11] to encourage the solution to reach integer
from continuous reconstruction methods then force the solution t@alues and be sparse. From the property of reweighing;therm,
converge into discrete values. Batenburg proposed a discrete algi#e solution is given by the intersection of reweigtietall and the
braic reconstruction algorithm to iteratively update the object boundfeasible region. If the solution stays in a non-integer value, we ran-
ary [4]. Fishburn [5] and Weber [6] used linear programming (LP)domly change the shape of reweighHedall to make it converge to
relaxation to solve this NP-hard problem. integers. Preliminary simulation results show that our method can
In recent years a significant amount of work has been devotedonverge to a sparse integer solution.
to sparse signal recovery, e.g., compressed sensing, but onlydimite

effort has addressed scenarios where the data to be reconstructed rigs-g;et t?\aeag:r:uI(;;?oannIozfet(rj'\eazisf(c)lrlgt\gstbrr:g ?:Cﬂons;ozblgrr;da?]’d\;\;wee
discrete in nature [7, 8]. In particular, no work has considered ho graphy p

proposed sparse reconstruction algorithm. In Section 4, we show
This work is supported in part by Chevron Corp. under thetjpioject  the reconstruction result from noiseless and noisy measurements and

Center for Interactive Smart Oilfield Technologies (CiSadtithe University ~ provide a performance comparison. In Section 5 we conclude this
of Southern California. work and discuss some further directions.




2. PROBLEM FORMULATION

For everyg, v(i, 3) decomposeg (a, 3) along thea axis with unit
step functionU (¢), while h(«, j) decomposeg(«, ) along thes

In this section, we introduce the formulation of our problem. Foraxis for eachn. The unit step functions are the basis in this trans-

simplicity, we focus on binary signals. Lé{«, 3) be a binary 2D

form, and this transform is invertible. Becaugéx, 8) only has

image and let the measurements be parallel projections along diffepinary values{0, 1}, we can see thai(i, 3) andh(a, j) will also
entangles. This method can be easily extended to higher dimensionave integer values in the sgi, —1,1}.
and to non-binary discrete valued signals. The relationship between

the projection measurements and sighahan be modeled using the
Radon transform

Py s(t) = //f(a,ﬁ)d(a -sin(f) + B - cos(0) — t)dadB (1)

The reconstruction problem is how to recover the sighladsed on a
set of different viewing angle§d;,: = 1, ..., m}. Note the Radon

[l f)

Fig. 1. Coordinate system for the Radon transform

transform is a linear transform. If the image has g pixels, we can
reshape the D imagef into al D vectorx with dimensiom = p-q.
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Fig. 2. Decomposition of binary image

Since vectorx is obtained by reshaping image we can also
reshape(i, 3) andh(a, j) into 1D vectorsu, andug. We define
x = T,u,, a unit-step transform of the original image along the
« axis, and similarlyx = Tgug as the transform along the axis.
Using this notation’T', andT 3 are well defined linear operators on
x and are invertible. We can now defii@ asD = [T, | Tg],
which will be an over-complete dictionary. In this dictionary we can

For each projection angle, equally spaced measurements are ma&lﬁ/ays findu such that = Duwith u € {—1,0, 1}. For example,

along thea’ axis (see Figure 1). If we take points along they’

axis, the measured data for one specific angle will be a dimension
vectorp. Then we can write the projection operator in matrix form:

@)

whereWy is a~y x n line projection matrix with anglé. If we have

Wex = Po,

if the image only has few “stripes” it direction, we can choose the
all the coefficients fronT', and set the coefficients froffis to zero.
Instead of solving all possibte, we seek to find reconstructed binary
images that have a sparse representation under this dictibndry
order to solve the integer inverse problem with € {0,1}, we
use linear programing relaxation to search the solutipr [0, 1].

d different viewing angles, we can represent the projection matriceBecause the number of measurementss much smaller than the

and measurements as:

Ax =y, 3)
with
W, Po,
A=| |, y=|": 4)
Wy, Po,

A will be am x n line projection matrix that majps onto measure-
ment datay, wherem = ~ - d. The reconstruction problem is to,
given the projection matriA and datay, with m << n, finding
a binary solutionx, z; € {0,1}. This is an integer, linear inverse
problem.

Now we define the decomposition @D binary imagef in
terms of unit step functions:

f(a7ﬂ) :25:1 ’U(’L,ﬂ) U(til)v Vﬁ
=2 hleng) - Ult—j), Va

®)
(6)

number of variables, this is still an under determined linear inverse
problem. Now, we restate this problem as a sparse signal recovery
formulation with a new measurement matAx= A - D:

min llull, 7
subjectto Au=y, A=A-D
Du=x>0
Du=x<1

Cancks and Tao [12] have shown that if the measurement matrix
has the restricted isometry property (RIP) then it can be guaranteed
that a perfect reconstruction signalcan obtained. However, the
RIP property of the measurement matﬁxdepends on the number
of viewing angles and the chosen transform, and it's only a sufficient
condition for perfect reconstruction. Generally speaking, we would
like to choose a dictionarId such that the signat has sparse rep-
resentation and also has low coherence.



With the presence of noise, the measurements wil beAu+
z, z is the noise with||z||]2 < e. In order to operate with noisy
measurements we change the constraints to:

random value. This results in random changes to the shape of the
ball, making it possible to find the correct vertices.

For the noisy case we are searching the soluti(#yirk Ku”

¢ region, therefore, even if we have the correct shape of reweZilghed
ball the solution will not be exactly all integer. It will always touch
the inner bound of the region (See Figure 4). In our simulations,
we used . z; - (1 — z;) [6] as the metric for non-integer solution.
This metric will be0 if z; € {0,1}. Our experimental results show
that our algorithm tends to find solution with more integer values,
wheres is the search allowance for noisy measurements. This apwhile non-randomized method stop after a few iterations providing
proach is closely related to LASSO [13] and sparse Bayesian learsolutions with fewer integer values.

min [lull, (8)
subjectto |ly — Aull2 <4
Du>0

Du<1

ing [14], where the goal is to achieve a good trade-off between data
fitting and model complexity. Without knowing the noise power
selecting an appropria@is non-trivial. If we choosé to be too
large, then the hyper beﬂly — ;&uH will contain the originu = 0.

2
In that case||n||, = 0 is the global minimum and the solution will
be a zero vector. On the other handg ifs too small, the intersec-
tion of hyper baIIHy AuH and0 < Du < 1 may be empty.
Boufounos et al [15] have proposed a cross validation method to es
timate noise power. With a good choice &fwe can assume that
the hyper baIIHy AuH contain the actual solution, we want
to recover. But it is also possible that some other paigtinside
the hyper ball will have lowejjuo |, . Donoho et al [16] proved that

under certain conditions fok the noisy reconstructed solutiaf is
at least as sparse as the ideal solutignand the atoms i belong
to ug.
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Fig. 4. The solution for noisy case: The reweighedoall will al-
ways touch the inner bound.

3. PROPOSED ALGORITHM

Algorithm 1 Reweighed; norm minimization for noisy measure-

ment

We modify the reweighed; minimization algorithm proposed by
Cancks [11]. We chooseiy = A’y as our initial starting point
for LP and iteratively search for a sparse solution. In each itera-
tion, this method minimizes the weightéd ball min,, ), wi|u/,
which more closely approximates tthe norm. By reweighing we
change the shape &f ball and make it “sharper” in some dimen-

sions. But in our case the linear region constraint will cut off the 3:

feasible region. It is possible that the solution will be trapped in
these intersection points (see figure 3). In order to jump off these lo-

Reweighted L1
ball

[ Feasible region
Feasible region /]
; dr=y
A= Reweighte!
L1 ball

| .

Fig. 3. Non-integer solution case: Because the feasible region is cut
off by the boundary condition, the intersection pball and feasible

region falls in the middle. After changing the shapeloball, an 6:

integer valued solution can be reached.
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Choose the allowance errérin observed data and stop criteria

p.
2: Define the maximal iteration numbégy,,.. and set the iteration

numberl = 0. Initialize the Weightwgo) =1vi=1,....,n
and decide\. Useu® = A'y as the starting point for LP.
Solve the reweigheti norm linear programming problem with
starting pointu®~Y,

u® = argmin HW(l)u
1
subject to Hy — AuH <é 9)
2
Du=x>0
Du=x<1
: Update the weights: foreach=1,...,n
1
I+1
LI 10
i W+ A (10)

: Reset the weights for non-integer solutions: Eveiierations,

we reset thaw; corresponding to non-integet; by a random
number that is uniformly distributed betwefin2/A]

witl «— U(0,2/A) (12)

Terminate the iteration if: converges|u'™ —u'||, < por
reach the maximum number of iteration. Otherwise, incréase
and go to step 3.

cal non-integer value, evehyiterations we check the solution to find
out the non-integer dimensions and reset their weights; with a



4. EXPERIMENTAL RESULT

We use CVX [17] in order to solve the LP. The test binary image is
a simplified Sheep-Logan phantom and has 8ize 32 pixels. The
measurements are taken with equally spaced projections for each
angle, and different projection angles uniformly betweén 180]
are selected. The measuring matrbwill be a 245 x 1024 ma-
trix. In order to test the noisy measurement, we added to the mes )
surement data white Gaussian noise with zero mean and varianceFig- 5 The testlng phantom Fig. 6 ReCOﬂSUUCtIOﬂ with
e = {0,0.1,0.25,0.5,1}. We choose the search allowante be noisep = 0.1
equal to the noise variance. For comparison, we list the mean squa~-
error achieved by Weber [6] and by a filtered back-projection recon
struction.

Our algorithm is very sensitive to the noise level. As we showed
in Figure 4, the solution is always given by the inner bound of the

region Hy — KuH < 4. Choose a larges will always push the
2

solutionu closer to0. From the simulation results, we notice that the
reweighed/; minimization does lead to solutions taking boundary ’

valuesx; € {0,1}. For the reconstruction, it shows our method Fig. 7. S. Weber method with Fig. 8. Flltered back- prOJeCUO”
performs better in low noise cases. A possible explanation is thafloisep = 0.1 result with noisep = 0.1

for high noise levels, the feasible regigy — Au’ < ¢ has been

increased, and solution converges closed.ta' herefore for higher
noise level, we find fewer supports that satisfy the conditions of [16] 235 1
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5. CONCLUSIONS 025} Filter Backprojection 1

We have presented a new sparse reconstruction formulation for di o2} 1
crete tomography, which focuses on reconstruction of binary image el
that have a sparse representation using a well designed dictiona Our Method
Our algorithm uses LP to relax the integer solution condition anc ~ o1F  yerote Method
also search the the sparse representation. We introduce a rando
ized reweighed; minimization to enhance convergence to a binary
solution. % 02 0z 08 08 1

Future work will be focus on the relationship between the de- ] o )
signed dictionaryD and the corresponding measuring mathix= Fig. 9. Mean square error with different noise level
A -D. For example, we can always increase the size of dictionary to
obtain a sparser representation, but this will also increase the coher-
ence .fOI’ the measuring matrix. Another p,OSSIble direction is to US@ ] YT Lin and Antonio Ortega, “Reconstruction algorithm for high contragouity
the discrete value property to enhance signal recovery from nois travel time tomography,” iraccepted by the IEEE International Conference on
measurements. Acoustics, Speech, and Sgnal Processing , Dallas, Texas, 2010.
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