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ABSTRACT

Discrete tomography (DT) focuses on the reconstruction of a dis-
crete valued image from few projection angles. Prior knowledge
about the image can greatly increase the quality of the reconstructed
image, especially when a small number of projections are available.
In this paper, we show that DT can be formulated as a sparse signal
recovery problem. By using a well designed dictionary, it is possi-
ble to represent a binary image with very few coefficients. Starting
from this concept, we modify the reweighedl1 algorithm to achieve
a sparse solution and preserve the binary property of image. Pre-
liminary simulation results show that our algorithm can outperform
conventional continuous reconstruction methods in cases when very
limited data is available.

Index Terms— Discrete tomography, sparse signal recovery,
compressive sensing

1. INTRODUCTION

Discrete Tomography (DT) requires reconstructing an image from
very few projection angles, with each pixel in the image consist-
ing of only a small number of discrete values [1]. While in many
tomographic reconstruction problems the target image does not nec-
essarily have discrete intensity values, using prior knowledge to re-
construct a discrete-valued approximation can lead to better quality,
especially if the number of measurements is very limited [2]. When
the number of projection angles is small, the number of unknown
variables required for reconstruction far exceeds the amount of mea-
sured data. Thus, a DT reconstruction involves finding a discrete val-
ued solution to a highly under determined linear system, for which a
unique solution is unlikely to exist.

Many algorithms have been proposed to solve the DT problem.
In combinatorics, researchers are interested in reconstructing a spe-
cial class of images,hv-convex objects, with only horizontal, vertical
and diagonal projection angles. Herman and Kuba gave compre-
hensive reviews in their books [1, 3]. Another approach is to start
from continuous reconstruction methods then force the solution to
converge into discrete values. Batenburg proposed a discrete alge-
braic reconstruction algorithm to iteratively update the object bound-
ary [4]. Fishburn [5] and Weber [6] used linear programming (LP)
relaxation to solve this NP-hard problem.

In recent years a significant amount of work has been devoted
to sparse signal recovery, e.g., compressed sensing, but only limited
effort has addressed scenarios where the data to be reconstructed is
discrete in nature [7, 8]. In particular, no work has considered how
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to take advantage of the potential sparseness of2D binary images
under certain transformations.

In practice, while in most cases images to be reconstructed are
not binary (or even discrete valued), DT can be applied to scenar-
ios where the target image can be segmented into high contrast re-
gions. For example, in computed tomography (CT), researchers are
interested in reconstructing images from fewer X-ray projection an-
gles in order to reduce the radiation dose for the patients. In an
angiography only two types of regions need to be considered: blood
vessels enhanced by a radio-opaque contrast agent and the “back-
ground” which represents the rest of body [2]. Another example
is geophysical computed tomography. The physical characteristics
between different underground layers can change dramatically. In
contrast to medical tomography where the measurements are taken
from all viewing angles, the region of interest is scanned from very
limited angles [9, 10]. Other applications can be found in different
fields: chromosome analysis, transmission electron microscope [3],
and experimental fluid dynamics [7].

In this paper we propose to solve the DT in the transform do-
main by exploiting sparseness characteristics. We expect this trans-
form domain sparseness to be a better model for typical images of
interest than spatial domain sparseness (which would involve assum-
ing that typical images contain very few non-zero pixels). Specifi-
cally, we observe that binary images with few discontinuities along
x andy axis have a sparse representation as linear combinations of
unit step functions. Every binary image can then be represented
in terms of basis in this dictionary multiplied by coefficient vector
u, ui ∈ {0,−1, 1}. Note that step functions can also be applied
to approximate general discrete valued images, for which a sparse
approximation will lead to piecewise constant reconstruction.

For image reconstruction, we use LP to search for a sparse so-
lution by minimizing‖u‖1 rather than‖u‖0. With LP we can also
relax the integer constraint,ui ∈ {0,−1, 1}, and instead find so-
lutions such thatui ∈ [−1, 1]. We modify the reweighedl1 min-
imization algorithm [11] to encourage the solution to reach integer
values and be sparse. From the property of reweighing thel1 norm,
the solution is given by the intersection of reweighedl1 ball and the
feasible region. If the solution stays in a non-integer value, we ran-
domly change the shape of reweighedl1 ball to make it converge to
integers. Preliminary simulation results show that our method can
converge to a sparse integer solution.

The paper is organized as follows. In Sections 2 and 3, we
present the formulation of the discrete tomography problem and the
proposed sparse reconstruction algorithm. In Section 4, we show
the reconstruction result from noiseless and noisy measurements and
provide a performance comparison. In Section 5 we conclude this
work and discuss some further directions.



2. PROBLEM FORMULATION

In this section, we introduce the formulation of our problem. For
simplicity, we focus on binary signals. Letf(α, β) be a binary 2D
image and let the measurements be parallel projections along differ-
ent angles. This method can be easily extended to higher dimensions
and to non-binary discrete valued signals. The relationship between
the projection measurements and signalf can be modeled using the
Radon transform

Pθ,f (t) =

∞∫ ∫

−∞

f(α, β)δ(α · sin(θ) + β · cos(θ)− t)dαdβ (1)

The reconstruction problem is how to recover the signalf based on a
set of different viewing angles{θi, i = 1, . . . ,m}. Note the Radon

Fig. 1. Coordinate system for the Radon transform

transform is a linear transform. If the image hasp× q pixels, we can
reshape the2D imagef into a1D vectorx with dimensionn = p·q.
For each projection angle, equally spaced measurements are made
along theα′ axis (see Figure 1). If we takeγ points along theα′

axis, the measured data for one specific angle will be a dimensionγ
vectorp. Then we can write the projection operator in matrix form:

Wθx = pθ, (2)

whereWθ is aγ×n line projection matrix with angleθ. If we have
d different viewing angles, we can represent the projection matrices
and measurements as:

Ax = y, (3)

with

A =



Wθ1

...
Wθd


 , y =



pθ1

...
pθd


 (4)

A will be am×n line projection matrix that mapsx onto measure-
ment datay, wherem = γ · d. The reconstruction problem is to,
given the projection matrixA and datay, with m << n, finding
a binary solutionx, xi ∈ {0, 1}. This is an integer, linear inverse
problem.

Now we define the decomposition of2D binary imagef in
terms of unit step functions:

f(α, β) =
∑p

i=1 v(i, β) · U(t− i), ∀ β (5)

=
∑q

j=1 h(α, j) · U(t− j), ∀ α (6)

For everyβ, v(i, β) decomposesf(α, β) along theα axis with unit
step functionU(t), while h(α, j) decomposesf(α, β) along theβ
axis for eachα. The unit step functions are the basis in this trans-
form, and this transform is invertible. Becausef(α, β) only has
binary values{0, 1}, we can see thatv(i, β) andh(α, j) will also
have integer values in the set{0,−1, 1}.

(a)f(t) = U(t− 2)− U(t− 7) (b) Example binary image
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0 1 0
1 0 0
−1 0 1





(c) Decomposition alongα axis





0 1 −1
1 −1 0
0 1 0





(d) Decomposition alongβ axis

Fig. 2. Decomposition of binary image

Since vectorx is obtained by reshaping imagef , we can also
reshapev(i, β) andh(α, j) into 1D vectorsuα anduβ . We define
x = Tαuα, a unit-step transform of the original image along the
α axis, and similarlyx = Tβuβ as the transform along theβ axis.
Using this notation,Tα andTβ are well defined linear operators on
x and are invertible. We can now defineD asD = [Tα | Tβ ],
which will be an over-complete dictionary. In this dictionary we can
always findu such thatx = Du with u ∈ {−1, 0, 1}. For example,
if the image only has few “stripes” inα direction, we can choose the
all the coefficients fromTα and set the coefficients fromTβ to zero.
Instead of solving all possiblex, we seek to find reconstructed binary
images that have a sparse representation under this dictionaryD. In
order to solve the integer inverse problem withxi ∈ {0, 1}, we
use linear programing relaxation to search the solutionxi ∈ [0, 1].
Because the number of measurementsm is much smaller than the
number of variablesn, this is still an under determined linear inverse
problem. Now, we restate this problem as a sparse signal recovery
formulation with a new measurement matrix̃A = A ·D:

min ‖u‖1 (7)

subject to Ãu = y, Ã = A ·D

Du = x ≥ 0

Du = x ≤ 1

Cand̀es and Tao [12] have shown that if the measurement matrixÃ

has the restricted isometry property (RIP) then it can be guaranteed
that a perfect reconstruction signalu can obtained. However, the
RIP property of the measurement matrixÃ depends on the number
of viewing angles and the chosen transform, and it’s only a sufficient
condition for perfect reconstruction. Generally speaking, we would
like to choose a dictionaryD such that the signalx has sparse rep-
resentation and̃A also has low coherence.



With the presence of noise, the measurements will bey = Ãu+
z, z is the noise with‖z‖2 ≤ ǫ. In order to operate with noisy
measurements we change the constraints to:

min ‖u‖1 (8)

subject to ‖y − Ãu‖2 ≤ δ

Du ≥ 0

Du ≤ 1

whereδ is the search allowance for noisy measurements. This ap-
proach is closely related to LASSO [13] and sparse Bayesian learn-
ing [14], where the goal is to achieve a good trade-off between data
fitting and model complexity. Without knowing the noise powerǫ,
selecting an appropriateδ is non-trivial. If we chooseδ to be too

large, then the hyper ball
∥∥∥y − Ãu

∥∥∥
2

will contain the originu = 0.

In that case,‖n‖1 = 0 is the global minimum and the solution will
be a zero vector. On the other hand, ifδ is too small, the intersec-

tion of hyper ball
∥∥∥y − Ãu

∥∥∥
2

and0 ≤ Du ≤ 1 may be empty.

Boufounos et al [15] have proposed a cross validation method to es-
timate noise power. With a good choice ofδ, we can assume that

the hyper ball
∥∥∥y − Ãu

∥∥∥
2

contain the actual solutionu0 we want

to recover. But it is also possible that some other pointũ0 inside
the hyper ball will have lower‖ũ0‖1. Donoho et al [16] proved that
under certain conditions for̃A the noisy reconstructed solutioñu0 is
at least as sparse as the ideal solutionu0, and the atoms iñu0 belong
tou0.

3. PROPOSED ALGORITHM

We modify the reweighedl1 minimization algorithm proposed by
Cand̀es [11]. We chooseu0 = Ã′y as our initial starting point
for LP and iteratively search for a sparse solution. In each itera-
tion, this method minimizes the weightedl1 ball minu

∑
i
wi|ui|,

which more closely approximates thel0 norm. By reweighing we
change the shape ofl1 ball and make it “sharper” in some dimen-
sions. But in our case the linear region constraint will cut off the
feasible region. It is possible that the solution will be trapped in
these intersection points (see figure 3). In order to jump off these lo-

Fig. 3. Non-integer solution case: Because the feasible region is cut
off by the boundary condition, the intersection ofl1 ball and feasible
region falls in the middle. After changing the shape ofl1 ball, an
integer valued solution can be reached.

cal non-integer value, every5 iterations we check the solution to find
out the non-integer dimensionsui and reset their weightswi with a

random value. This results in random changes to the shape of thel1
ball, making it possible to find the correct vertices.

For the noisy case we are searching the solution in
∥∥∥y − Ãu

∥∥∥
2
≤

δ region, therefore, even if we have the correct shape of reweighedl1
ball the solution will not be exactly all integer. It will always touch
the inner bound of the region (See Figure 4). In our simulations,
we use

∑
i
xi · (1 − xi) [6] as the metric for non-integer solution.

This metric will be0 if xi ∈ {0, 1}. Our experimental results show
that our algorithm tends to find solution with more integer values,
while non-randomized method stop after a few iterations providing
solutions with fewer integer values.

(a) Feasible region (b)
∑

i
xi · (1− xi) with iterations

Fig. 4. The solution for noisy case: The reweighedl1 ball will al-
ways touch the inner bound.

Algorithm 1 Reweighedl1 norm minimization for noisy measure-
ment

1: Choose the allowance errorδ in observed data and stop criteria
ρ.

2: Define the maximal iteration numberlmax and set the iteration
numberl = 0. Initialize the weightw(0)

i = 1, ∀i = 1, . . . , n

and decide∆. Useu0 = Ã′y as the starting point for LP.
3: Solve the reweighedl1 norm linear programming problem with

starting pointu(l−1).

u(l) = argmin
∥∥∥W(l)u

∥∥∥
1

subject to
∥∥∥y − Ãu

∥∥∥
2
≤ δ

Du = x ≥ 0

Du = x ≤ 1

(9)

4: Update the weights: for eachi = 1, . . . , n

w
l+1
i =

1

|ul
i|+∆

(10)

5: Reset the weights for non-integer solutions: Every5 iterations,
we reset thewi corresponding to non-integerui by a random
number that is uniformly distributed between[0, 2/∆]

w
l+1
i ← U(0, 2/∆) (11)

6: Terminate the iteration ifx converges
∥∥ul+1 − ul

∥∥
2
≤ ρ or

reach the maximum number of iteration. Otherwise, increasel
and go to step 3.



4. EXPERIMENTAL RESULT

We use CVX [17] in order to solve the LP. The test binary image is
a simplified Sheep-Logan phantom and has size32× 32 pixels. The
measurements are taken with49 equally spaced projections for each
angle, and5 different projection angles uniformly between[0, 180]
are selected. The measuring matrix̃A will be a 245 × 1024 ma-
trix. In order to test the noisy measurement, we added to the mea-
surement data white Gaussian noise with zero mean and variance
ǫ = {0, 0.1, 0.25, 0.5, 1}. We choose the search allowanceδ to be
equal to the noise variance. For comparison, we list the mean square
error achieved by Weber [6] and by a filtered back-projection recon-
struction.

Our algorithm is very sensitive to the noise level. As we showed
in Figure 4, the solution is always given by the inner bound of the

region
∥∥∥y − Ãu

∥∥∥
2
≤ δ. Choose a largerδ will always push the

solutionu closer to0. From the simulation results, we notice that the
reweighedl1 minimization does lead to solutions taking boundary
valuesxi ∈ {0, 1}. For the reconstruction, it shows our method
performs better in low noise cases. A possible explanation is that,

for high noise levels, the feasible region
∥∥∥y − Ãu

∥∥∥ ≤ δ has been

increased, and solution converges closer to0. Therefore for higher
noise level, we find fewer supports that satisfy the conditions of [16].

5. CONCLUSIONS

We have presented a new sparse reconstruction formulation for dis-
crete tomography, which focuses on reconstruction of binary images
that have a sparse representation using a well designed dictionary.
Our algorithm uses LP to relax the integer solution condition and
also search the the sparse representation. We introduce a random-
ized reweighedl1 minimization to enhance convergence to a binary
solution.

Future work will be focus on the relationship between the de-
signed dictionaryD and the corresponding measuring matrixÃ =
A ·D. For example, we can always increase the size of dictionary to
obtain a sparser representation, but this will also increase the coher-
ence for the measuring matrix. Another possible direction is to use
the discrete value property to enhance signal recovery from noisy
measurements.
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