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ABSTRACT

We evaluate the performance of MPEG-7 image signatures, Com-
pressed Histogram of Gradients descriptor (CHoG) and Scale
Invariant Feature Transform (SIFT) descriptors for mobile visual
search applications. We observe that SIFT and CHoG outper-
form MPEG-7 image signatures greatly in terms of feature-level
Receiver Operating Characteristic (ROC) performance and image-
level matching. Moreover, CHoG descriptors demonstrate such
gains while being comparable with MPEG-7 image signatures in
bit-rate.

Index Terms— MPEG-7 Image Signature, feature descriptor,
mobile visual search, image signature.

1. INTRODUCTION

Mobile phones have evolved into powerful image and video process-
ing devices, equipped with high-resolution camera, color displays,
and hardware-accelerated graphics. They are also equipped with lo-
cation sensors, GPS receivers, and connected to broadband wireless
networks allowing fast transmission of information. This enables a
class of applications which use the camera phone to initiate search
queries about objects in visual proximity to the user. Such appli-
cations can be used for identifying products, comparison shopping,
finding information about movies, CDs, real estate or products of
the visual arts. Google Goggles [1], Nokia Point and Find [2] and
Snaptell [3] are examples of recently developed commercial applica-
tions. For these applications, a query photo is taken by a mobile de-
vice and compared against previously stored database photos. A set
of image feature descriptors is used to assess the similarity between
the query photo and each database photo. This feature set needs to
be robust against geometric and photometric distortions encountered
when the user takes the query photo at an arbitrary viewpoint in an
unknown lighting environment.

The size of the data sent over the network needs to be as small
as possible to reduce latency and improve user experience. One ap-
proach to the problem is to transmit the JPEG compressed query
image over the network, but this might be prohibitively expensive at
low uplink speeds. An alternate approach is to extract feature de-
scriptors on the phone, compress the descriptors and transmit them
over the network as illustrated in Figure 1. Such an approach has
been demonstrated to reduce the amount of transmission data sig-
nificantly [4, 5]. Furthermore, feature extraction can be carried out
quickly (< 1 second) on current generation phones making this ap-
proach feasible [6]. In this work, we focus on the latter approach.

1.1. Prior Work
SIFT [7], Speeded Up Robust Features (SURF) [8], Gradient Loca-
tion and Orientation Histogram (GLOH) [9], CHoG [4] are some ex-
amples of feature descriptors proposed in the literature. The review

Fig. 1. A mobile CD cover recognition system where the server is
located at a remote location. Feature descriptors are extracted on the
mobile-phone and query feature data is sent over the network. Once
the CD cover is recognized on the server, identification data is sent
back to the mobile-phone.

paper by Mikolajczyk et al. [9] compares the performance of several
descriptors. However, Mikolajczyk et al. do not take the bit-rate of
descriptors into account in their comparisons.

Low bit-rate feature descriptors are of increasing interest to the
computer vision community. Often, feature vectors are reduced by
decreasing the dimensionality of descriptors via Principle Compo-
nent Analysis (PCA) or Linear Discriminant Analysis (LDA) [10,
11, 12]. In [13], we have studied dimensionality reduction and en-
tropy coding of SIFT and SURF descriptors. Yeo et al. [14] and
Shakhnarovich et al. [15] reduce the bit-rate of descriptors by using
projections on SIFT descriptors to build binary hashes. As part of the
MPEG-7 standard, Brasnett and Bober [16] propose a 60-bit feature
descriptor, which will be the focus of this evaluation.

In our work [4, 5], we propose a framework for computing low
bit-rate feature descriptors called CHoG. Gradient histograms are
quantized using Huffman trees, Type Quantization or Lloyd Max
Vector Quantization and compressed efficiently using fixed and vari-
able length codes. CHoG descriptors can be compared directly in
the compressed domain eliminating the need for decompression in
the descriptor matching process. In [5], we provide a comprehen-
sive comparison of several low bit-rate descriptors proposed in the
literature and show that CHoG outperforms all other schemes.

1.2. Outline
In this work, we compare the performance of MPEG-7 image sig-
nature tools [16], SIFT and CHoG in the context of mobile visual
search applications. In Section 2, we review MPEG-7 image signa-
tures and CHoG descriptors. In Section 3, we discuss feature level
Receiver Operating Characteristic (ROC) experiments and pairwise
image-matching experiments for the different descriptors.

2. BACKGROUND

In Section 2.1, we review MPEG-7 image signatures and the match-
ing pipeline used for comparing two sets of image signatures. In Sec-
tion 2.2, we discuss CHoG descriptors and the compression method
used to achieve low bit-rates.
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Fig. 2. The DAISY spatial binning configurations used for n =
9, 13, 17 spatial bins. We use soft spatial binning where each pixel
contributes to multiple spatial bins.

2.1. MPEG-7 Image Signature
As part of the MPEG-7 standard, Brasnett and Bober [16] propose a
pipeline for detecting near-duplicates and images with very similar
content. The pipeline is shown to be highly effective in detecting
scaled, rotated, flipped and compressed variants of a query image.

The matching pipeline relies on 512-bit global and 60-bit lo-
cal descriptors. Both global and local descriptors are based on the
multi-resolution Trace transform which constructs a set of 1-D rep-
resentations of an image [16]. A binary identifier is extracted from
each representation using a Fourier transform. The 512-bit global
descriptor is computed on the entire image. Up to 80 Difference of
Gaussian (DoG) interest points and Harris corners are detected in
the image scale-space. The 60-bit local desciptors are used to de-
scribe patches extracted around these interest points. The 512-bit
global image signature is effective for detection of near-duplicates
but is not effective when comparing images of the same object taken
at different perspectives and lighting conditions. Hence, we do not
use the 512-bit global signature in our comparisons here.

Next, we discuss how image matching is done with two sets of
local descriptors. Descriptors are compared using Hamming dis-
tance. A 4-stage geometric matching scheme is proposed in the
standard for matching two sets of local descriptors. Hypotheses are
formed in stages one and three. A series of geometric tests are per-
formed in stages two and four. The tests in stages two and four must
be passed in order for a hypothesis to progress to the next stage. The
stages become increasingly computationally complex so that each
stage aims to minimise the number of hypotheses that are accepted
for subsequent processing. The geometric matching pipeline is ro-
bust to affine transforms.

2.2. CHoG Descriptor
Lowe [7], Bay et al. [8], Dalal and Triggs [17], Freeman and
Roth [18] and Winder et al. [12] have proposed histogram of gra-
dient based descriptors. The CHoG [4] descriptor also falls in this
category.

2.2.1. Descriptor Computation

The patch extracted around the interest point is first divided into
localized cells. The CHoG descriptor uses polar spatial binning
configurations [19, 12] as shown in Figure 2. Next, we quantize
the gradient histogram in each spatial bin. Let PDx,Dy (dx, dy)
be the normalized joint (x, y)-gradient histogram in each spatial
bin. We coarsely quantize the 2D gradient histogram and cap-
ture the histogram directly into the descriptor. We approximate
PDx,Dy (dx, dy) as P̂D̂x,D̂y

(d̂x, d̂y) for (d̂x, d̂y) ∈ S, where S rep-
resents a small number of quantization centroids or bins as shown
in Figure 3. The histogram binning schemes exploit the underly-
ing gradient statistics observed in patches extracted around interest
points, as shown in Figure 3. We perform a Vector Quantization
(VQ) of the gradient distribution into a small set of bin centers, S,
shown in Figure 3. We call these bin configurations VQ-3, VQ-5,
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Fig. 3. The joint (dx, dy) gradient distribution (a) over a large num-
ber of cells, and (b), its contour plot. The greater variance in y-axis
results from aligning the patches along the most dominant gradi-
ent after interest point detection. The quantization bin constellations
VQ-3, VQ-5, VQ-7 and VQ-9 and their associated Voronoi cells are
shown at the bottom.

VQ-7 and VQ-9. As we increase the number of bin centers, we
obtain a more accurate approximation of the gradient distribution
and the performance of the descriptor improves [4].

2.2.2. Descriptor Compression

We quantize the gradient histogram in each cell individually and map
it to an index. The indices are then encoded with fixed-length or
entropy codes, and the bitstream is concatenated together to form
the final descriptor. In prior work [4, 5], we have explored several
schemes for histogam compression. One such histogram compres-
sion scheme is type coding [5], which we describe here.

Let m represent the number of gradient bins. m varies from
3 to 9 for the VQ bin configurations shown in Figure 3. Let P =
[p1, p2, ...pm] ∈ Rm

+ be the original distribution as described by the
gradient histogram, and Q = [q1, q2, ....qm] ∈ Rm

+ be the quan-
tized probability distribution defined over the same sample space.
For type coding, given a parameter n, we first construct a lattice of
distributions (or types) Q = Q(k1, . . . , km) with probabilities

qi =
ki

n
, ki, n ∈ Z+ ,

X
i

ki = n (1)

We then pick and transmit the index of the type that is closest to the
original distribution P . The quantization scheme used for finding
values {ki}, given P and n as input parameters is described in [5].
The paramater n controls the fidelity of quantization. The higher the
value of n parameter, higher the fidelity. The total number of types
K(m, n) is the number of partitions of n into m terms k1 + . . . +
km = n

K(m, n) =

 
n + m− 1

m− 1

!
, (2)

implying that the rate R(m, n) needed for type encoding is upper-
bounded according to R(m, n) ≤ log2 K(m, n) ∼ (m−1) log2 n .
The paramater n ∼ m typically provides good trade-off between bit-
rate and feature error rate [5]. Feature-level ROC performance and
image-matching performance obtained by varying m and n are dis-
cussed in Section 3. Next, we map the quantized type to an index.
The algorithm that maps a type to its index fn : {k1, . . . , km} →
[0, K(m, n)− 1] is described in [5]. In the final step, we encode
the index in each spatial cell with fixed-length or entropy codes.



Patch Modification Description
Rotate 180o Rotate patch by 180o

Rotate 90o Rotate patch by 90o

Brightness Increase all pixel intensity by 25%
Blur Blur each patch with a Gaussian

filter of σ=2
Shift Circular shift each patch

by 1 pixel
Winder-Brown Patches that correspond to

same 3-D point at different
scales, orientation and lighting.

Table 1. Description of patch modifications applied to Liberty data.

Spatial bins Gradient bins Type param n Bit-rate
DAISY-9 VQ-5 5 56
DAISY-13 VQ-7 7 81
DAISY-9 VQ-5 5 82
DAISY-13 VQ-7 7 119

Table 2. CHoG descriptor parameters

Fixed-length encoding provides the benefit of compressed domain
matching at the cost of a small performance hit.

We use symmetric Kullback Leibler (KL) divergence for com-
paring CHoG descriptors as it is shown to perform better than using
L1 or L2 norm [4]. For matching sets of descriptors, we use the ratio
test scheme proposed in [7] followed by a RANSAC affine consis-
tency check. We use a threshold of 0.9 for the ratio test as it gives a
good tradeoff between false-acceptance and false-rejection rates.

3. RESULTS

In Section 3.1, we discuss feature level ROC experiments and in
Section 3.2, we discuss pairwise image-matching experiments for
the different descriptors.

3.1. Feature Level Experiments
Feature level experiments are evaluated using the data sets provided
by Winder and Brown [12]. We randomly select 10,000 matching
pairs and 10,000 non matching pairs from the Liberty set for testing
purposes. We use the method proposed by Winder and Brown [12]
for descriptor evaluation. We compute a distance between each pair
of descriptors. From these distances, we form two histograms, one
for matching pairs and one for non-matching pairs. From the two
histograms we obtain a ROC curve which plots correct match frac-
tion against incorrect match fraction.

First, we perform a control experiment to validate the effective-
ness of MPEG-7 signatures for the simple modifications they were
designed for. We apply the set of modifications shown in Table 1 to
the Liberty patches. Note that the Winder-Brown modification in the
table refers to matching pairs obtained from the data sets provided by
the authors. For simple modifications, we observe that the MPEG-7
signature performs well as seen from the high ROC performance in
Figure 4. We observe a large gap in performance when we plot the
ROC performance for the Winder-Brown patch modification. From
this, we conclude that the MPEG-7 descriptor is robust to simple im-
age modifications like scaling, rotation, cropping and compression,
but is not robust to the kinds of scale, orientation, perspective and
photometric distortions present in the Winder and Brown data set.

Next, the 60 bit MPEG-7 image signature is compared to low
bit rate CHoG descriptors, and the 128-dimensional SIFT descrip-
tor. The 128-dimensional SIFT descriptor is quantized to 8 bits in
each dimension resulting in a 1024 bit descriptor. We use Hamming
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SIFT (1024 bits)
MPEG−7 (60 bits)
CHoG (56 bits)
CHoG (81 bits)
CHoG (82 bits)
CHoG (119 bits)

(a) (b)
Fig. 4. Figure (a) shows the performance of MPEG-7 signature for
different kinds of patch modifications. The MPEG-7 signature is
robust to simple modifications but is not robust to the distortions
present in the Winder-Brown data set. Figure (b) shows comparison
of 60 bit MPEG-7 image signature to CHoG descriptors. We observe
that the 56 bit CHoG descriptor outperforms the 60 bit MPEG-7 sig-
nature by a big margin. Note that the low bit-rate CHoG descriptors
perform on par with the 1024 bit SIFT descriptor.

distances for comparing MPEG-7 signatures, L2 norm for compar-
ing SIFT descriptors and symmetric KL divergence for comparing
CHoG descriptors. The parameters and bit-rates for the CHoG de-
scriptors are listed in Table 2. We observe in Figure 4 that low bit-
rate CHoG descriptors perform on par with SIFT and outperform
MPEG-7 image signatures by a significant margin.

3.2. Image Level Experiments
The Zurich Building Database [20] is used for pairwise image
matching experiments. The database consists of 1005 building
images and 115 query images. The database is small enough for
pairwise image matching to be feasible. We match each query im-
age with each database image and declare the database image with
the highest number of feature correspondences to be the matching
candidate. Matching accuracy is defined as the number of correctly
identified query images. The original database images have reso-
lution 640×480, while the original query images have resolution
320×240. In our experiments, we upsampled the query images to
resolution 640×480 as it improves image matching performance.
Pairwise image matching allows fair comparison of different feature
descriptors independent of the techniques used for large-scale re-
trieval [21]. The performance of CHoG descriptors in a large-scale
retrieval system with a million images is discussed in [5].

Pairwise image matching results are summarized in Table 3. We
use a threshold of 0.9 for the ratio test prior to RANSAC geomet-
ric matching for all descriptors. The number of feature correspon-
dences after the geometric consistency step for different descriptors
is shown in Figure 5. We make the following observations from Ta-
ble 3.

Comparing schemes (1) and (2), we observe that the RANSAC
based approach provides a higher matching accuracy than the ge-
ometric matching scheme proposed in the MPEG-7 standard. By
visually inspecting matching feature correspondences, we observe
that the MPEG-7 standard produces more false positives than the ra-
tio test/RANSAC based approach. Furthermore, we observe that the
MPEG-7 geometric matching scheme is less robust to challenging
affine geometric distortions.

We note that the matching accuracy for schemes (1) and (2) at
70% and 76% is low. The matching accuracy of these two schemes
is low primarily because the maximum number of keypoints/image



# Descriptor Keypoint Geometric Maximum Acc
Type Type Matching Keypoints (%)

1 MPEG-7 MPEG-7 MPEG-7 80 70.4
2 MPEG-7 MPEG-7 RANSAC 80 76.5
3 MPEG-7 DoG RANSAC 600 82.6
4 SIFT DoG RANSAC 600 95.6
5 CHoG DoG RANSAC 600 97.4

Table 3. Image matching performance of different schemes
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Fig. 5. Figure (a) compares the matching accuracy of MPEG-7,
CHoG and SIFT descriptors. Note the gap in performance between
CHoG and MPEG-7 descriptors. CHoG descriptors perform on par
with SIFT while being comparable in bit-rate to MPEG-7 descrip-
tors. Figure (b) shows the average number of feature matches post
RANSAC for the different descriptors. There is a 2× gap in per-
formance between CHoG and MPEG-7 descriptors at a comparable
bit-rate.

is limited to 80 in the MPEG-7 standard. We conclude that 80 key-
points/image is not sufficient for visual search applications.

In schemes (3)-(5), we do not restrict the number of keypoints
to 80 per query image. For schemes (3)-(5), we use the DoG key-
point detector available online [22]. We extract upto 600 descriptors
from each image and use the same matching pipeline for the dif-
ferent descriptors. The CHoG descriptor used for comparison here
has a bit-rate of 73 bits/descriptor. Increasing the maximum num-
ber of keypoints from 80 to 600 improves the matching accuracy of
the MPEG-7 scheme from 76% to 82%. However, note that we can
achieve a higher matching accuracy using CHoG or SIFT descriptors
with 600 keypoints. The CHoG descriptor performs the best with an
accuracy of 97.4%. This indicates that CHoG and SIFT descrip-
tors are more discriminative than MPEG-7 image signatures, as also
inferred previously from the feature-level experiments in Figure 4.
Note, however, that the CHoG descriptor achieves the performance
of the SIFT descriptor at a bit-rate comparable to the MPEG-7 image
signature.

Finally, we compare MPEG-7, CHoG and SIFT descriptors us-
ing the same matching pipeline described in schemes (3)-(5) in Ta-
ble 3. We compare matching accuracy and average number of match-
ing feature correspondences post RANSAC for MPEG-7, SIFT and
the different CHoG descriptors listed in Table 2. We observe a sig-
nificant gap in matching accuracy between MPEG-7 (∼80%) and
the different CHoG descriptors (> 95%) at a comparable bit-rate.
Furthermore, there is a 2× gap in the number of feature matches be-
tween CHoG and MPEG-7 descriptors. From Figure 5, we conclude
that low bit-rate CHoG descriptors perform on par with SIFT while
being comparable in bit-rate to the MPEG-7 descriptor.

4. CONCLUSION

We have evaluated the performance of MPEG-7 image signatures,
CHoG, and SIFT descriptors for mobile visual search. We conclude
that both SIFT and CHoG outperform MPEG-7 image signatures
significantly in terms of both feature-level ROC performance and
image-level matching. Moreover, CHoG descriptors demonstrate
such gains while being comparable with MPEG-7 image signatures
in bit-rate. Based on this comparison, we conclude that the CHoG
descriptor is a better alternative to MPEG-7 image signatures and
SIFT for mobile visual search applications.
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based recognition.,” Tech. Rep. 260, ETH Zürich, 2003.
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