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ABSTRACT

Recent advances in sparse modeling and dictionary leafoing
discriminative applications show high potential for numes classi-
fication tasks. In this paper, we show that highly accurateeria
classification from hyperspectral imagery (HSI) can beiolthwith
these models, even when the data is reconstructed from snely
percentage of the original image samples. The proposed\isge
HSI classification is performed using a measure that aceofamt
both reconstruction errors and sparsity levels for spapeesenta-
tions based on class-dependent learned dictionaries. i@omglhe
dictionaries learned for the different materials, a lineating model
is derived for sub-pixel classification. Results with regbérspec-
tral data cubes are shown both for urban and non-urbanrerrai

Index Terms. Sparse modeling, hyperspectral imagery, classifica

tion, dictionary learning.

1. INTRODUCTION

A hyperspectral imager is a powerful tool used for biomeldiea-
vironmental, and military applications. HSI is a collectiof (pos-
sibly hundreds of) narrowly-spaced channels or bands, umieas
energy at different wavelengths from the electromagng@csum,
and thus allowing spectroscopic analysis. In addition ® gko-
metric spatial features that provide shape information typacal
grayscale or RGB image, HSI also provides spectral feathegsl-
low a much richer characterization of the objects and maltem a
scene

There are numerous intrinsic challenges associated with HS2 W

The first one is sensor noise, which is inherent in every eect
optical sensor. There are also complicated light intesastioccur-
ring in the atmosphere and on the targeted surface. For dgamp
the atmosphere includes energy from contributing factach sas
clouds, haze, and water vapor that need to be corrected.eAdLth
face level, spatial resolution and reflected light off nafanm sur-
faces generate spectral mixtures, meaning that the mebsnezgy
at each pixel is often not from a homogeneous source but ainamb
tion of multiple materials. In addition to these physicatttas, the
many narrowly-spaced spectral bands yield high-dimeasidata,
thus making visualization, interpretation, transmissamd exploita-
tion difficult. On the other hand, these spectral bands agblyi
correlated and redundant. Consequently there is a needéfiroats
that capitalize on that redundancy to address the progessial-
lenges of high-dimensional data.

Sparse representations express the signal’s informatig¢m w
possibly the smallest amount of data from a (usually redot)da
dictionary; algorithmically this corresponds to finding alws
tion to an underdetermined system of linear equations, icond
tioned/constrained to be sparse (see [1] and referencesirthe
Originally, sparse representations were performed usfinged dic-
tionary D € R**M where M is the number of atoms, aridis
the signal’s dimension (e.g., DCT, Fourier basis). It ienfmore

appropriate to “learn” these dictionaries and adapt thethealata.
State-of-the-art results have been reported in applicatielated
to noise removal, inpainting, discriminative learningasdification,
and unsupervised labeling (clustering) [2, 3, 4, 5, 6, 7R&jcently,
a non-parametric (Bayesian) approach to sparse modelohg@n-
pressed sensing was proposed in [9]. The dictionary iséehuging
a beta process, which automatically estimates the diatjosize
M, and makes no explicit assumption on the noise variance.
addition, it can deal with non-uniform noise sources in tharmels,
a problem often encountered in HSI. This is the approach irsed
this paper when reconstructing the HSI from sub-sampleal dat
We first propose a framework for supervised full-pixel mate-
rial identification in remotely sensed HSI using dictioearthat are
learned for specific classes. The class label assignmesaébrpixel

In

is determined by a function that takes into account both fae-s
sity level and the reconstruction error, and was originphgposed
in [7]. Furthermore, we evaluate this technique by valitatihe
data quality of significantly undersampled and then recanstd
HSI following [9]. We address two possible cases. The firsieca
deals with (noisy) training data obtained from the recarcded im-
age itself. This can be seen as havingaariori information or high
quality spectra to match with the spectra in the scene. Tbense
case deals with “high” quality training data, that is acqdifrom
non-subsampled spectra. This could be seea-psori measure-
ments or knowledge of the contents of the scene or spectrastha
acquired in a laboratory. Finally, we deal with spectral imixby
using a combination of atoms from the trained dictionaries.

The remainder of this papers is organized as follows. IniGect
e describe the proposed approach for HSI supervisedfatass
tion. Section 3 extends the method to spectral unmixingti@ed
gives numerical examples, and the last section presentduciing
remarks, implications, and future research directions.

2. SUPERVISED CLASSIFICATION OF HSI

In this section, we consider supervised classification. ugesvised
classification we mean that there are known classes, anchfoirg
purposes, known samples pertaining to those classes.

Let the hyperspectral image pixel be represented by thewrect
valued functiony; (r, c) : 2 — R,1 < i < b, whereb denotes the
number of spectral bands. The following model is assumethglur
this work: Y = X + W, whereY = [y, ..., y.] € R°*" repre-
sents the sensor measuremefits,s a Gaussian noise source, and
X are the “true” signals (target's spectral response). Thssii-
cation problem becomes that of assigning a label to an egtiofa
X.

2.1. LearningtheHSI dictionaries

Assume there ar€’ possible classes, whe€g; is thej — th class
representing a pure material. Let the training setdgrbe ¥; =



[¢){, ..., 17, ], amatrix where the columa! € R” is thei —th train-
ing sample corresponding to thie- ¢th class. At the training phase
of the algorithm, we learn a dictionary (for each class) blyisg
the following standard sparse modeling problem:

(Dj, Aj) = argmin | ¥; — DA} + A|Al,, (@)

where|| - ||r is the matrix Frobenius norm; € R°** is the
learned dictionaryd; = [, ...,am,;] € R *" is the associated

matrix of sparse coefficients, is a nonnegative penalty parameter
that controls the sparsity of the solution, anchn take the value O or

with fractional abundances is calculated for each pixearimuncon-
strained case, this can be easily solved using least squéoesver,

to make the problem physically meaningful, this abundamator is
constrained to be nonnegative and to sum to one, and is knethea
Constrained Least Squares (CL8ddel. It is also desirable that this
abundance vector be sparse, meaning that the materiallapbat

is explained with as few possible pure sources (see alsh [A2¢ast
squares inversion will typically produce a dense soluttawever,
the sum to one constraint in the CLS model induces a sparge sol
tion. See [13] and references therein for more details ifoih® and
other models. More recently, the Least Squares L1 (LSL1)ehod

1. Whenp = 0, thel, pseudonorm counts the number of nonzero enWwas proposed for this spectral unmixing problem [12, 14]thiis

tries in the coefficient vectors. Letting= 1 is a convex relaxation
of the problem and is commonly referred to as Lasso f10hel;
case tends to be more stable and is preferred during thisivbhie
solution to problem (1) is found using coordinate descepe tygf
algorithms (e.g., KSVD [11]).

2.2. Label assignment

Once the dictionaries are learned, we seek to assign a dlask/|

to each pixel (or block of pixels stacked in column format)om
classified. As proposed in [7], we apply a sparse coding stejpet
samplesy using each of the learned dictionaries, and simply selec
the labelj corresponding td; that gives the minimum value of

@)

a € RM. In other words, our classifier is simply the mapping

f(Y) = {J|R(y7DJ) < R(vai)vi € [17 "'70]77: 7&.7} (3

This means that pixels efficiently represented by the cttlecof
subspaces defined by a common dictionély are classified to-
gether. This measure for supervised classification acsdoth for
reconstruction (fitting) error and sparsity. Without thaisity term,
the classifier (3) can be seen asBEuclidean Distance Classifier
The sparsity term especially helps in the presence of naidéoa
other artifacts. This naturally comes from the fact thatltizling
will tend to prefer the class where the data can be repredsamtee
sparsest way possible, even in cases where the reconsirector
for the tested signal is the same for more than one class. ISee a
[12] for a related penalty when considering the data itseiféad of
class-dictionaries.

R(y,D;) = ly = Djall + Alals, Vi,

model, the sum to one constraint was relaxed, meaning aon-
straint on the abundance coefficients needs to be minimiasiad
of summing strictly one. In addition, as mentioned abovg] [sed
the data itself instead of learned dictionaries.

An extension to the problem of spectral mixing can be natu-
rally formulated from the framework in Section 2. The modgl i
very similar to what is known as the linear mixing model, wer
D would represent the materials antl the corresponding abun-
dances. In order to adapt it, we need to add a nonnegativity co
straint on both the dictionary and coefficients. Now, coregato
Ehe traditional models, where the endmembers are realrapsid-
natures, here the solution is a linear combination of sutespaep-
resenting these endmembei® @re learned atoms and not actual
pure materials). One possible advantage of this approattfaist
can account for material variability caused for example #stdrs
like noise, non-homogenous substances, etc. The main sdin i
train a dictionary for each class, and then form a new dietipn
D := [D1,...,Dc] € R*MC similarly in nature to the approach
followed in [8] for robust face recognition. In this way, teparse
coding on each pixel comes from a “mixed” union of subspaies (
contrast, [8] expected a single sub-dictionary to be setkat each
time). In this work, we use the fully constrained sparse egditep
by using a sum to less or equal to one constraint in the abgedan
coefficients. This is equivalent to solving the sum to onest@int
with a zero vector included as an endmember, and thereflorgiag
shade and dark pixels to be accounted for [15], and addgegisin
case where there are missing sources. Finally, the prolsieeived
using a primal-dual strategy. The core algorithm becomes

3. SPECTRAL UNMIXING

In the procedure just discussed, there is prior knowledgheopos-
sible sources in the scene, and for each pixel, a label igreessi
corresponding to the class that provides a minimum value)n (
This is a classification at the full-pixel level. It is alsogsible to
extend this to a pixel having one or more labels, implying iha
is not composed of a pure class of material, but a combinatfon
these. This is known asgpectral unmixingand can be considered as
a special case of source separation. The main idea is to g@sem
each pixel into a linear (or nonlinear) combination of puoerses
(i.e., endmembejs Focusing in the linear mixing model, a vector

Input: Hyperspectral scenE, training sets{¥'; }5_,, number
of dictionary atoms\/, sparsity paramete.

Output: Sparse matrix of fractional abundances for
Yy, 1= 1, N
Training:

e For each training sety; [ {,...,1/;7{]_], learn
(Dj, Aj) := argminp>o,a30 | ¥; — DA% + X[ Al|1.
e D:=[D1,...D;], j=1,..,C.
Abundance estimates:

e For each pixey;, solve:

a; =arg  min lly: — Dasl3.
a; Z0, ]| |l1 <1

1The problem in (1) is not convex, however, is biconvex: fixiignakes
it convex in A and viceversa.

2Experiments were done in this work using bgth= 0 andp
Results using p = 0 are not shown due to space constraints.

1.

Fig. 1. Algorithm for sub-pixel supervised classification in HSI.



4. EXPERIMENTAL RESULTS

A summary and discussion of the experimental results isepted
in this section. The first HSI cube tested is theHill scene (with

permission from the US Army Engineer Research and Develop

ment Center, Topographic Engineering Center, Fort Bel\h),
acquired by the HyMAP sensor, with a total of 432,640 pixElach
pixel is a 106 dimensional vector after removing the highewat
absorption and noise damaged bands. The second HSI cubd tes

C1 c2 C3 C4 | C5 C6 C7 | C8 C9
0.997 | 0.990| 0996 | 1 1 | 0.998 1 1 1
0.951 1 1 1 1 1 072 1 | 0.973

Table 1. Per class classification accuracies for the dictionaries
learned from the APHill image (without subsampling for thiam-
ple). First row: classification for training samples. Sedorow:

is the Urban scene, acquired by the HyDICE sensor, and has a&lassification for validation samples.

total of 94,249 pixels, and a subset of 162 channels. It idigyub
available at http://www.agc.army.mil/Hypercube/pub®MAN.zip.
The “known” material labels for APHill, and their corresyating
training and validation samples af@1: coniferous trees (967, 228);
C2: deciduous trees (2346, 234)3: grass (1338, 320C4: lakel
(202, 38);C5: lake2 (112, 122)C6: crop (1026, 58),C7: road
(197, 50);C8: concrete (74, 25); an@9: gravel (87, 38). For the
Urban scene, the “known” material labels, and the corrediogn
training samples are: trees (515), grass (289), and road (36

As mentioned before, there are several objectives for thes
reported experiments. First, to test the proposed supehad-
gorithm both at the full-pixel and sub-pixel (spectral urmg)
level. Second, we include results for cases where the data h
been reconstructed from significantly subsampled (corsprbs
images using the technique described in [9]. This assessgs h
the classification accuracy is degraded when drasticatlydieg
the available measurements. Furthermore, the algorithtested
under two possible discrimination tasks. The first one maies
a-priori knowledge assumption, and attempts to match “known”
classes from the scene itself, meanigC Y. The second one

C1 c2 C3 C4 C5 C6 Cc7 c8 | C9
0.991| 0.972| 1 | 0.985 1 1 | 0.992 1 1
0.925 1 1 | 0973| 0991| 1 | 0980| 092| 1

Table 2. Per class classification accuracies for a reconstructed
APHill image with3 x 3 patches and randomly sampling or2¢%

of the data. First row: classification for training sampleSecond
row: classification for validation samples.

€ Forthe second case, where the sources are avadgtieri, the
samples used for the training phase are not extracted fretimtage
to be tested. Instead, the samples were drawn from the atidata
ully sampled). This poses a more difficult problem than filgt
case since the data source is different (needs to be matetiethe
data being tested). This effect can be noticed by lookingabier
3, where the spectral angle, given &x,y) = cosfl(m),
measures how far is the reconstructed data from the origirai-
tunately, in this case, the largest angles correspond ttakied and
lake2 classes. A possible explanation for this is that mb#teen-

attempts to match spectra from each class that has beemlyalrea€rdy coming from the sun is absorbed by water, and thus thelsig

measured, meaning ¢ Y. For example, it could be laboratory
spectra modified to fit the sensor’s characteristics, oriposly
acquired spectra at full sampling rate (higher quality).r &bthe
experiments,M/ = 25, and A = 0.01 and we used the SPAMS
software available at http://www.di.ens.fr/willow/SPAMWI

4.1. Full-pixel labeling

For the first experiment, samples from the image itself asslus
train the classifier. Training and validation classificataccuracies
for each of the 9 classes using the original image, and a stcamn
tion from only 20% of the original data (with measured pixels and
bands selected uniformly at random), are summarized iresabl
and 2 respectively. Additionally, the accuracies for training and
validation sets for several sampling sizes is summarizédbie 5.
Pixels with incorrect label assignments most often occlfoe the
coniferous/deciduous/gras€1/C2/C3), and road/concrete/gravel
(C7/C8/C9) classes. This should not be surprising. First, grass an

noise ratio is much lower in those regions. Individual dfésation
results for the case of usird)% of the original data are summarized
in Table 4% Note that high accuracy is still attained whgsts of the
data is missing. In addition, although some of the overalleacies
are low, even whefi8% of the data is missing, most of the incorrect
labels occurred with classes with strong similarities .(e:gad and
concrete). So even very low sampling measurements coulddero
with relatively accurate, wide-area mappings, as seergargi2 and
Table 5.

trees share common spectral features (e.g., high amplatidee
green visible and near infra-red regions). Also, it is comnto
encounter mixing between those two materials (trees sodexl by
grass). Similarly, for the case of concrete and road, dpasalution
plays an important role (sidewalks around roads), but disdfact
that concrete and road are spectrally very similar. Thefeetsfare
increased with the data reconstructed from limited samplbgre
the spatial interpolation decreases subtle geometridlsleaad crit-
ical spectral resolution may be carried away with the migsiata.

3The patch dimensions in Table 2 and subsequent tables iediEsize
used in [9] for the reconstruction, thereby incorporatipgt&l coherence in
the process. A patch size pfx p indicates that vectors of dimensiép? are
used.

patch size, data% | Minimum | Maximum | Average | Median
3x3,2% 0.5600 65.0973 2.5234 | 1.8717
3x3,5% 0.3119 58.2472 1.4068 1.095
3 x 3,10% 0.2526 23.65 1.0279 0.8505
3 x 3,20% 0.2429 13.2451 0.9275 0.7768
4 x4,2% 0.4585 77.0751 2.3063 1.6707
4 x4,5% 0.2917 67.9867 1.45 1.1083
4x4,10% 0.2783 19.2132 1.1119 | 0.9013
5x%x5,2% 0.4099 74.8831 2.2458 1.605

Table 3. Spectral angle (in degrees) between original and recon-
structed sets.

4.2. Sub-pixel labeling: spectral unmixing

Full-pixel classification provides with a fairly accurabepad repre-
sentation of the scene. However, in some cases, and as yshvio

4In Table 4, “training samples” refers to samples in the sapadial loca-
tion as those used for training in thepriori sources. Due to the sampling and
reconstruction process, these samples are not any loreygrddl to those in
the tested image. Same for third column of Table 5.



C1 C2 C3 C4 C5 C6 C7 C8 C9

0736 0991 | 1 | 0985|0991 | 1 | 0.746 | 0.770 | 0.988

0.442 1 1 | 0.894 1 1 | 0.120| 0.960 | 0.973

Table 4. Per class classification accuracies, using a-priori sosrce

for dictionary learning, for the reconstructed APHill imagvith3 x
3 patches and samplir)% of the data. First row: classification for
training samples. Second row: classification for validatsamples.

patch size,data% | Training | Validation | Training | Validation
Original 0.9965 0.9851 - -
3x3,2% 0.9561 0.8748 0.7910 0.7514
3 x3,5% 0.9910 0.9529 0.8745 0.8295
3 x 3,10% 0.9920 0.9845 0.9195 0.8593
3 x 3,20% 0.9898 0.9864 0.9452 0.8903
4 x4,2% 0.9842 0.9175 0.8288 0.8109
4 x4,5% 0.9940 0.9727 0.8834 0.8289
4 x4,10% 0.9951 0.9783 0.9287 0.8617
5x5,2% 0.9954 0.9535 0.8412 0.8091

Fig. 3. Left: False RGB composite of a subset of the Urban scene.
The3 x 2 white rectangle contains a partially occluded section &f th
road. Middle: Full-pixel classification. The class labelkssigned to
the pixels inside the rectangle are: road, trees; treesegretrees,
trees. Note how the road is not complete due to the mixinghtRig
Sub-pixel classification. The mixtures obtained in theaegte are:
0.07 trees +0.14 trees +0.78 road, 0.24 trees +0.46 trees +0.29
road; 0.42 trees +0.51 road, 0.81 trees +0.19 road; 0.46 trees +

0.45 road, 0.85 trees +0.15 road. Color is assigned by averaging
the nonzero coefficients from each class. (This is a colordijju

in solving acquisition, transmission, and storage issetstad to
HSI. This suggests possible future sensing modes like Higlovand

Table 5. Overall classification accuracies for the original and much faster area coverage. Furthermore, noise and datadaaicy
reconstructed APHIll images. The first two columns show -overare managed efficiently by the dictionary learning basessdiaa-

all training and validation results for the case where thaining
sources are taken from the image. The last two columns sheralbv
training and validation accuracies for the case where fgiympled
spectra is available for training.

suggested, it may be necessary to go further than the fxei-fEvel

in situations where there are sub-pixel targets, or, as camhmen-

countered in overhead imaging, where partial occlusiong @caur

due to elevation differences. Consider the example iisttin Fig-
ure 3, for urban HSI. It consists of a road surrounded by grasis
trees. A full-pixel detection is unable to give partial infation

about an occluded (by trees) section of the road (see boximtt-

dle figure), or regions where tree branches and grass are sathe
area. Sub-pixel labeling on the other hand provides a aledua-

acterization of the scene composition, and the variald#tsociated
to each of these classes is appropriately accounted witbaaritd
dictionary endmember.”

tion technique, without the need for explicit dimensionuetibn or
computationally intensive algorithms associated witmkémeth-
ods.
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