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Institute for Human Machine Communication
Technische Universität München

Arcisstr. 21, 80634 München, Germany
{lehment, moritz.kaiser, arsic, rigoll @ tum.de}

ABSTRACT
While monocular gesture recognition slowly reaches matu-

rity, the inclusion of 3D gestures remains a challenge. In or-

der to enable robust and versatile depth-enabled gestures, a

depth-image based tracking approach is developed. Using a

model-based annealing particle filter approach, the pose of a

single subject is retrieved and tracked over longer image and

motion sequences. Other than many previous depth-image

based systems, full body tracking is performed. The system

is independent from specific camera types and is independent

from color or texture cues. Pose space exploration in com-

plex kinematic chains is enhanced by considering extending

inverse kinematics. Exploiting the highly parallel nature of

the 3D point based approach, the algorithm is partially imple-

mented on a GPU, leading to near real time performance.

Index Terms— Pose Estimation, Pose Tracking, 3D, An-

nealing Particle Filter, Stereo, Inverse Kinematics

1. INTRODUCTION

Interaction in virtual reality environments is currently mostly

performed by tracking markers located on the person’s limbs

and the subsequent analysis of the extracted trajectories. This

procedure usually requires time intensive preparation and at-

taching active or inactive markers to the person tracked. In

order to provide a more comfortable and realistic experience,

it is desirable to avoid such markers. Therefore we suggest

the use of a vision based pose estimation and tracking sys-

tem. Such systems usually rely the on analysis of monocular

images and are still limited by self-occlusions or ambiguities.

While there are systems using multiple viewing angles to

avoid such problems, these are usually unfit for everyday use

outside of a laboratory. In order to avoid these drawbacks,

we use depth images provided by a stereo camera to capture

the tracked person. Analyzing the extracted point clouds,

we fit a body prototype to the data using an annealing parti-

cle filter approach. This model-based approach avoids most

self-occlusion conflicts and ambiguities, without requiring

pre-learned motions or dedicated detection of single body

parts.

Whereas most previous works in the field of pose tracking

relied on silhouettes, edges and specific anchor points like

hands or heads, our approach aims to be independent from

the source of the 3D point cloud. This practically means

using only 3D data without any color or texture information,

since a number of devices operate by time-of-flight (TOF)

measurements, such as a photonic mixture device [1] or other

non-visual methods. Although this leads to a limited loss

of precision and jitter, it is sufficient for gesture recognition

modules and allows for better interoperability with devices

ranging from stereo-camera systems to TOF cameras.

Annealing Particle Filters (APF) have already been utilized

in various 2D tracking applications, frequently with multi-

ple camera angles ([2],[3]) and have been shown capable to

handle depth information when using additional cues: Azad

([4]) and Bernier ([5]) used skin cues as anchor points for

the wrists, Darby ([6]) relied on pre-learned motion patterns.

To compensate for the absence of a dedicated hand tracker,

we developed a self-adapting inverse kinematics system for

improved fitting of arms and legs. First trials were performed

using depth data obtained from a stereo camera, as experi-

ence has shown a lack of detail with current PMD sensors.

We will demonstrate that it is possible to perform full-body

APF based tracking using only depth-data in near real time

by intelligently reducing the number of particles required and

exploiting modern parallel computer hardware.

2. ACQUISITION OF 3D DATA

As the purpose of our approach was to create a versatile pose

tracker for a number of different data sources, we aimed to

become independent from specific products or systems. So

while we used a proprietary system for image acquisition and

the calculation of 3D data, all further processing steps are

designed to be compatible with depth data from any source.

Stereo images were captured using a Point Grey Bumblebee

XB3 camera. Before calculating the 3D data, the foreground
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was extracted using a gaussian mixture model as described in

[7]. From the masked image, the tracked person’s 3D cloud

was then calculated with the Point Grey Triclops library. The

data were then reformatted into an array of 3D points and

passed on to the pose estimator.

3. MATCHING TO 3D POINT CLOUD

3.1. Annealing Particle Filter

Particle filters are a powerful method for exploring high-

dimensional solution spaces and variations have been used

in a number of tracking scenarios. Usually, an initial set of

particles S0, each representing a set of parameters, is matched

against data from observations. Based on the quality of the

matching a score wi
0, also called weight, is assigned to each

particle si0. The particles are then resampled based on their

weight and yield a new particle set which can be used to

estimate a solution. After slightly mutating the parameters in

the new set, the resulting set S1 can then be used for the next

observation.

The annealing particle filter concept is a variation on common

particle filters described in great detail by Deutscher ([2]) and

Gall ([8]). The basic idea is to replace the single weighting

step of the particle filter by several gradual steps (the simu-

lated annealing), thereby achieving a better exploration of the

configuration space and avoiding local maxima of the weight-

ing function. This approach, as all particle filters, allows an

easy parallelization and has the added advantage of requiring

fewer particles.

3.2. Designing The Weighting Function

While the conceptual framework of the annealing particle fil-

ter can be applied to a number of different problems, the spe-

cific weighting function for the individual particles needs to

be tailored closely to the application. Since we are working

solely with a cloud of 3D data points signifying the detected

surface of the tracked person, we aim to minimize the differ-

ence between the detected cloud and the mesh of a cylinder-

based stickman model. The full-body model used consists of

15 cylinders, with a mesh of 4 x 5 points, projected onto the

visible side, and currently allows for 30 degrees of freedom.

An exemplary stickman is therefore represented by a total of

300 3D points (S) which have to be matched against the cloud

of 3D data points (C).

To achieve best matching, we use three separate weighting

criteria: Matching of skeleton points against the point cloud,

matching cylinder edges against the point cloud and finally

reverse-matching the point cloud against the skeleton points.

In the following we will briefly explain the reasoning and

method behind the weighting process. Matching the 3D cylin-

der points against the 3D point cloud aims at minimizing the

euclidean distance between each cylinder point and the clos-

est cloud point. The first weight is therefore computed as:

wS2C
′ =

∑
s∈S

e10 minc(deukl(ps,pc)), (1)

wS2C = e1.0−wS2C
′
. (2)

Since the visible edges of the cylinders are especially sen-

sitive to disalignment with the cloud point, we can use these

for a more precise fitting. We therefore modify the skeleton-

to-cloud scoring (1) to use only edge points with

wE2C
′ =

∑
e∈Se

e10 minc(deukl(pe,pc)), (3)

wE2C = e1.0−wE2C
′
. (4)

While these two weights give a good indication of how

well a skeleton fits inside the point cloud, we also want to

make sure that the point cloud is totally filled by the skele-

ton. Due to the size of the cloud, we segment it into smaller

subsections for improved fitting of smaller regions Ci. The

segmentation is achieved by k-means clustering of the point

cloud. Outlying regions with only a few points, like hands and

feet, therefore tend to have their own clusters, giving them

equal weight to larger, more central regions like the torso.

Thus, problems arising from the unequal distribution of data

points over the body are largely avoided. To ensure that all

parts of the point cloud are close to some part of the skeleton,

we use the following relationship:

w(i)
C2S

′ =
∑
c∈Ci

e10 mins(deukl(pc,ps)), (5)

w(i)
C2S = e1.0−w(i)

C2S
′
, (6)

wC2S =
∏

i

w(i)
C2S. (7)

Now we can combine these weights to get the final score for

a single particle:

wscore = wC2S × wE2C × wS2C (8)

In addition to the point cloud based weighting, other mecha-

nisms influence the particle score as well: Self-collision be-

tween checks limbs and joint limit checks are included, in or-

der to avoid illegal poses and can impose severe penalties on

unwanted configurations. However, a full description of these

would exceed the focus of this paper. Using the final score

to judge the quality of a given pose particle, we can now use

the framework of an APF to estimate the best pose fitting the

observations.

3.3. Resampling of Particles

The weighted particle set St, m at timestep t, annealing step m,

consists of St, m = [(s0t, m,w
0
t, m) . . . (s

N
t, m,w

N
t, m)]. The particle
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Fig. 1. Different poses with the matched body prototype overlaid, full body and upper body only

snt, m itself contains the encoded joint angles and basic trans-

formations, while the weight, wn
t, m, is computed from the

fitting of the particle to the observed data. Resampling was

performed by stochastic universal sampling, generating St+1, 0

from St, M with Rscatter and St, m+1 from St, m with Rcovariance.

Random scattering Rscatter between timesteps is set to be quite

large, while Rcovariance is set proportional to the covariance of

the parameters in the particle set.

Inverse Kinematics: The regular APF approach is well

suited for fitting complex functions with independent vari-

ables. However, the human body consists of a number of

kinematic chains. So to improve the matching of an arm

with a low number of particles, it may not be sufficient to

randomly mutate the angles. Instead, we use a simplified

inverted kinematic chain to inject a number of modified parti-

cles in the resampling step, exploring alternative poses of the

arm.

While such approaches usually rely on individual tracking

of the hands as anchor points for the inverse kinematics as

in [4], we instead utilize the wrist position from the pose

estimate. While this is less accurate, it eliminates the need

for a dedicated hand tracking and consequently speeds up

processing. To generate the modified particles, we start with

the last ’optimal’ estimate. The elbow is rotated out of its

current ’optimal’ position and the resulting shoulder and el-

bow angles φS, x, φS, y, φS, z, φElbow are used to build a new

particle (see algorithm 3.3). Without anchor points such as

separately tracked hands, the APF can get stuck in high elbow

angles. To avoid this situation, we extend the arms slightly

during inverse kinematics.

Static Particles: Nine basic arm poses were selected (arms

forward, to the left/right and hanging down in all combi-

nations) and are combined with particles from the current

population. The static particles are required to help initializa-

tion and recover the arms after a number of common tracking

failures.

Randomizing: To counteract premature convergence on

local optima, we insert about 10% of randomized particles.

These are particles drawn by stochastic universal sampling

from the existing population and then scattered by large ran-

dom mutation (Rscatter) of the joint angles. This allows for

a more thorough exploration of the configuration space even

as the regular particle set is converging. The insertion of

randomized particles also helps in recovering from failed

tracking.

3.4. Utilizing GPU and Multicore Processing

A typical skeleton, calculated from a single particle, consists

of 300 points. Using 300 particles and assuming a 3D cloud

of a thousand points, 90 × 106 point-to-point distances have

to be calculated. While this would be prohibitive on a reg-

ular CPU, modern GPUs are perfectly fitted for just such a

task. By exploiting the simple basic structure of the euclidean

distance calculation and the weighting functions, we were

able to run large parts of the weighting process on a regular

NVIDIA Geforce GTX 275 graphics card.

To further improve performance, parts of the processing

pipeline were parallelized into threads running on different

cores of a multi-core CPU. While the APF is calculating

the pose for a point cloud, the image processing is already

preparing the point cloud for the next time step. This leads to

an improved utilization of CPU und GPU resources.

4. PERFORMANCE AND OUTLOOK

The algorithm has been tested on a 2.66 GHz Intel Core2
Quad CPU with 3 GB RAM and NVIDIA GTX 275 graphics
card, achieving 2.5 fps (300 particles, 8 annealing steps).
However, GPU memory is not yet coalescent and a number
of functions, like pose calculation, k-means clustering and
resampling, are still to be moved from the CPU to the GPU.
We therefore expect further significant increases in process-
ing speed, up to real time capability.
For testing, a set of 80 different movement sequences was
analysed with four iterations each, giving 320 sequences.
Four different persons performed a number of gestures and
poses of varying complexity, ranging from simple waving
to complexer poses like ducking, bowing or dragging virtual
objects. At 300 particles and 8 annealing steps, we observed
80.6% successful tracks. Of these, 31.0% suffered brief
lapses and were recovered successfully. By introducing 10%
particles with inverse kinematics, the tracking error on hands
and elbows was decreased by 12.74% compared to an other-
wise identical tracking algorithm with no inverse kinematics.
Considering that we did not use any learned motion models
or anchor points, these are quite remarkable results. The
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Algorithm 1 Calculation of shoulder angles after elbow ex-

tension and rotation by α, all vectors in shoulder reference

system

1: a = vElbow − vShoulder

2: b = vHand − vElbow

3: c = vHand − vShoulder

4: β = arccos

(
|a|2 + |c|2 − |b|2

2 |a| |c|

)

5: m = |a| cos(β) c

|c|
6: n0 = a−m
7: βext = 0.6β

8: mext = |a| cos(βext)
c

|c|
9: next = |a| sin(βext)

n0

|n0|
10: aext = next +mext

11: cext =

√
|b|2 − |next|2 c

|c|
12: bext = cext + aext

13: γext = arccos

(
|a|2 + |b|2 − |cext|2

2 |a| |b|

)

14: φElbow = γext − π
15: q0 = QuaternionFromAxisAngle(cext, α)
16: n = q0 next q

−1
0

17: h1 = (0, 0, 1)T

18: h2 =
aext

|aext|
19: δ1 = VecOnVecRoundAxis(h1, h2, h1 × h2)
20: q1 = QuaternionFromAxisAngle(h1 × h2, δ1)
21: q2 = QuaternionFromEuler(φElbow, 0, 0)
22: q3 = q1 q2

23: h3 = q3 h1 q
−1
3

24: δ2 = VecOnVecRoundAxis(h3, b, aext)
25: q4 = QuaternionFromEuler(0, 0, δ2)
26: q5 = q1 q4

27: (φS, x, φS, y, φS, z) = QuaternionToEuler(q5)

sequences used can be obtained from the authors.
By simple modification of the body model, which is defined
in a XML file, we were able to convert the full body tracker
to an upper body tracker without any modification of the al-
gorithm itself. This underscores the flexibility gained from
abandoning pre-learned motion models in favor of a purely
depth-centered approach, allowing for easy modifications,
fast adaptions of existing modules and tracking of unknown
motion sequences. However, this flexibility comes at the price
of decreased stability and robustness. With the introduction
of affordable and more precise TOF cameras as an alternative
to stereo-based vision systems the conflict between flexibility
(using only depth data) and precision (using pre-learned mo-
tion models) is expected to become more pronounced.
For our future work, we expect to reach real time capability
by moving further functions onto the GPU and optimizing
memory usage. With further refinement of the body proto-
types and improvements and accelerations on the occlusion

Algorithm 2 Resampling between timesteps

1: St+1,norm = SUS(St,M ) +Rscatter

2: St+1,inverse = InverseKinematics(soptimal
t,M ) + 0.1Rscatter

3: St+1,static = StaticPoses(St,M ) + 0.1Rscatter

4: St+1,0 = [St+1,norm, St+1,inverse, St+1,static]

Algorithm 3 Resampling between annealing steps

1: St+1,norm = SUS(St,M ) +Rcovariance

2: St+1,crossover = Crossover(St,M ) +Rcovariance

3: St+1,random = SUS(St,M ) +Rscatter

4: St+1,0 = [St+1,norm, St+1,crossover, St+1,random]

detection we expect significantly increased tracking preci-
sion. Ultimately we hope to build a versatile pose tracking
module fit for fast re-adaption to different data sources and
usage scenarios.
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