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ABSTRACT

In this paper, a new approach for matching and recognizing
affine-distorted planar shapes is proposed, which allows for
partial occlusions. In our approach, each shape is divided into
a sequence of ordered affine-invariant segments based on the
properties of curvature scale space (CSS) shape descriptor.
Then Smith-Waterman algorithm is applied for matching the
pair of affine-invariant segment sequences. Finally the point
correspondences along the two shapes are obtained and the
affine transform is estimated accordingly. Experiments show
that our algorithm is effective for matching and recognizing
shapes which are distorted by affine transforms, including
translation, rotation, scaling, and shearing. Furthermore, it
is capable of dealing with the case where one of the shapes or
both shapes are partially occluded.

Index Terms— Affine-invariant matching, partial occlu-
sion, planar curves, Smith-waterman algorithm

1. INTRODUCTION

The boundaries of planar shapes contain considerable amount
of information which enables human beings to recognize ob-
jects without further information. The problem of shape
matching and recognition is of central importance in com-
puter vision, and has wide applications in shape similarity
retrieval, object recognition and 3D curve reconstruction.
However, despite the great efforts for solving this problem,
it is still a very difficult task for two main reasons: 1) the
images of an object taken from different viewpoints suffer
from perspective distortions, and 2) sometimes the planar
shapes to be recognized are partially occluded, which makes
the problem even more challenging.

Itis well known that a perspective transformation between
two images of an object can be approximated by an affine
transformation if the object is planar and far away from the
image plane [1]. Therefore, various affine invariant shape
matching methods have been developed [2]. They are capable
of addressing complex issues such as matching under exces-
sive noise condition, matching under affine transformations,
etc. However, they work only for closed shapes, assuming
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that the whole shape is always visible in images. In real ap-
plications, it is possible that the object to be recognized is
only partially visible, which makes the recognition problem
far more difficult than that for closed shapes. Only very few
approaches for shape matching under partial occlusion have
been proposed [3] [4]. However, they work only for shapes
up to a similarity transform.

In this paper, we present a new method for affine-invariant
shape matching and recognition under partial occlusion, aim-
ing to solve the above mentioned problems. The rest of this
paper is organized as follows. Section 2 gives an overview
of the proposed method. In Sections 3 and 4, the details of
the proposed method are presented. Experimental results are
shown in Section 5, and concluding remarks are given in Sec-
tion 6.

2. OVERVIEW OF THE METHOD

For two given planar shapes A and B, suppose the boundary
of each shape has been extracted and is represented by a se-
quence of ordered points respectively as: A = [2,(ta)] (to =
1,2,--+ ,N,) and B = [zp(tp)] (tp = 1,2,--+ , N}), where
Za(tq) (or zp(tp)) is a 2 x 1 vector, giving the v and v coordi-
nates of the ¢,-th (or ¢;-th) point along A’s (or B’s) boundary.
For a shape without occlusion, its boundary is a closed curve.
If a shape is partially visible, its boundary is represented by
an open curve. The goal of affine-invariant shape matching
is to find out if A and B are related by an affine transform.
That is, to find if A and B share a maximum common part
(A° € A, B® € B), such that B¢ = T'A° + t, where T is the
affine transformation including rotation, scaling and shearing,
t is the translation.

Let us denote the i-th segment of A as a; = [z4(Sq4;)]
where sq, = pi,pi + 1, ,piy1 (when p; < p;y1); and
Sa; = pispi 1,00+, Ng, 1, -+ pig1 (when p; > piyq for
the last segment of a closed curve). In both cases, z,(p;) and
Zo(piy1) are the starting point and end point of segment a;
respectively. Similarly, a segment of B between point x(q;)
and x3(gj41) is denoted as b; = [mb(sbj)].

In matching the two shapes A and B, the process consists
of three steps.

1. The affine-invariant points along each shape are de-
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tected. Every two consecutive affine-invariant points
determine an affine-invariant segment along the shape,
and thus a sequence of ordered affine-invariant seg-
ments are created for each shape.

2. The two sequences of affine-invariant segments are
aligned by the Smith-Waterman algorithm, and thus an
initial matched part is obtained.

3. If at least one shape is partially visible, the initial
matched part is extended using the affine invariant
affine-length, such that the maximum matched part is
obtained. Accordingly, the point correspondences are
obtained and the affine transform is estimated.

In the following, we will present our algorithm in details.

3. AFFINE-INVARIANT SEGMENTS
CONSTRUCTION

To deal with the occlusion case, we need to use local informa-
tion as well as global information of the shapes. Therefore,
we divide the shape into affine-invariant segments, where an
affine-invariant segment means the segment is preserved un-
der affine transforms. In [5], it is proved that the locations of
the contour local maxima in the curvature scale space (CSS)
image are preserved under an affine transform. Furthermore,
they are robust to noise. Therefore, we use this property to
construct the affine-invariant segments of the shape.

The details for how to construct the CSS images can be
found in [5], and we will not repeat it here due to the space
limitation. An example is given in Figure 1, where (a) is the
CSS image of the shape in (b), and the red asterisks in (b) are
the affine-invariant points 2, (p; ), which are extracted by de-
tecting the local maxima of the contours in the CSS image (a).
For two shapes A and B to be matched, we use this method
to extract the affine-invariant points x,(p;) in shape A, and
those x3(g;) in shape B. Figure 2 shows the segmentation
result of a pair of affine related camel shapes, where one of
the shapes is partially occluded.

Fig. 1. Constructing affine-invariant segments using CSS im-
age. (a): the CSS image of the shape shown in (b). (b): the
affine-invariant points (denoted by red asterisks) correspond-
ing to the local maxima of the contours in the CSS image (a).

4. AFFINE-INVARIANT SEGMENTS MATCHING

Suppose there are M affine-invariant points of shape A.
Then A is represented by a sequence of M affine-invariant
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(b)
(a)
Fig. 2. Affine-invariant segmentation. (a) and (b) are related
by an affine transform and (b) is partially occluded. The
affine-invariant points are shown by red asterisks and it is

clear that they are preserved under the affine transform.

segments if A is a closed shape, and a sequence of M — 1
affine-invariant segments if A is an open shape. Similarly,
shape B is represented by a sequence of N segments if B is
a closed shape, and N — 1 segments if B is partially visible.
To find the common part of the two shapes, we apply the
Smith-Waterman algorithm [6] to find the local alignment of
the two sequences. The Smith-Waterman algorithm was pro-
posed for identification of common molecular subsequences.
More generally, it is a dynamic programming algorithm that
finds the local alignment between two sequences of elements
with respect to a scoring system.

4.1. Similarity Score

To establish a scoring system for the Smith-Waterman algo-
rithm, we need to measure the similarity between two seg-
ments up to an affine transform. For a pair of elements (a;
and b;) which are related by an affine-transform, the transla-
tion effect can be removed by moving origins of their coor-
dinate systems to the curve segment centroids. For scaling
and shearing, it is easy to prove that they can be eliminated
by a whitening transformation [7]. Let us denote the shape
elements after centering as @; and b; accordingly. We apply
the singular value decomposition (SVD) to them respectively,
for whitening.

a; = U(L S, a VaT

b; =U, S, V! M
where V. and V,! are the whitened sequences corresponding
to a; and bj;, and they represent the canonical forms of the
two curve segments. It is easy to show that the two canon-
ical forms of a pair of affine-related curve segments are re-
lated only by a rotation. To measure the similarity of the two
canonical forms, we use the centroid distance (the distance
between a boundary point to the shape centroid) as the shape
signature to represent the shape, which is rotation invariant.
Then the similarity of the two canonical forms for a; and b,
is measured by computing the cross-correlation score of the
corresponding 1-D shape signatures. One example is given in
Figure 3, where the correlation score of the shape elements
pair (in red) is 0.9994.
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Fig. 3. Slmllarlty measurement: the red segments in (a) and
(b) are the shape elements to be compared; (c) and (d) are the
canonical forms for the two shape elements; (e) and (f) are
the 1-D signatures of the canonical forms.
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4.2. Smith-Waterman Alignment

Totally there are three possible cases: whole-to-part match-
ing (one shape is closed and the other is open), whole-to-
whole matching (both are closed), and part-to-part matching
(both are open). Let us first discuss the whole-to-part match-
ing case. Without loss of generality, we assume A is closed
and B is open. Then the two sequences can be denoted by
A= {al,ag, s ,CLM}, and the B = {bl, by, -+ ,bN—l}-
A similarity score for a; and b;, denoted by w(4, j), can be
computed using the method presented in Section 4.1. Fur-
thermore, a gap penalty is defined as:

=) =w(bj, =) = ~1 @)

where — is an insertion of a gap into the aligned sequences. In
the Smith-Waterman algorithm, a matrix H is set up, whose
preliminary values have the interpretation that H (4, j) is the
maximum similarity of two elements ending in a; and b;, re-
spectively [6]. H is built as follows:

H(i,0)=0,0<i<M
H(0,7)=0,0<j<N-1

0
H(i—1,5—1) +w(a;,bj) (3)
H(z—l,])—i-w(a“—) ’
H(i,j —1) +w(=,bj)
1<i<M,1<j<N-1

w(a;,

H(i,j) = max

The pair of elements with the maximum similarity is found
by first locating the highest value in H. The other matrix
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entries leading to this maximum value are then sequen-
tially determined with a trace-back procedure ending with
an entry of I equal to zero. This procedure identifies the
corresponding element alignment. Details of the Smith-
Waterman algorithm can be found in [6]. Since A is a closed
shape, a circular shift is applied to A, denoted by A; =
{ai mod M5 @(i41) mod M, ", A(i+M—1) mod M}a(Z =
1,2,--- M), where mod is the circular shift operator.
Every A; is aligned with B and the best alignment is selected
as the initial matched part.

For the whole-to-whole matching case, we use the same
method to get the initial matched part. For the part-to-part
matching case, we can still use the above method except that
no circular shift is needed.

As far as the initial matched part is obtained (see the red
part in Figure 4 (a) and (b)), we extend the matched part by
computing the affine-length [8] (see the green part in Fig-
ure 4 (c¢) and (d)). Thus the point correspondences along
the matched part are determined accordingly. Therefore, the
affine transform between shape A and B can be computed
from the point correspondences (see Figure 4 (e) and (f),
where the blue shape is the original shape, and the red dashed
line describes the “registered” shape, which is defined as the
shape converted from its corresponding shape by the obtained
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o

Fig. 4. Final Matching: the red segments in (a) and (b) are
the initial matched part; the green segments in (c) and (d) are
the final matched part; (e) and (f) : the original shape (in blue
line) overlaid with the “registered” shape (in red dashed line)

5. EXPERIMENTAL RESULTS

To test our algorithm, we carry out the experiments on
the Multiview Curve Database (MCD) [9]. In the original
database, all shapes are closed curves. In our experiments,



we randomly remove some part of the shape to make it par-
tially visible. Due to the space limitation, apart from the
whole-to-part example shown in Figure 4, two more exam-
ples (Figure 5 for whole-to-whole matching and Figure 6 for
part-to-part matching) are shown in this section. It is clear
that our algorithm works well for all the three cases.

In the following we focus more on the whole-to-part case
to test the robustness of our algorithm to partial occlusion. For
quantitative analysis, we randomly select one affine-related
shape pair from each of the 40 shape classes in MCD, and re-
move part of one shape (randomly ranging about 10% to 50%)
in each pair, resulting 40 part-to-whole affine-related pairs in
total. The registration error is measured by the percentage of
non-overlapping area between the common part of the origi-
nal shape and its “registered” shape. We compare our method
with [4], as a representative of the state-of-the-art methods for
shape matching under partial occlusion. We take the average
registration error over the 40 shape pairs for a statistal quanti-
tative comparison. The average error of our proposed method
is 13.12%, which is much smaller than 49.41%, the average
error of the reference method [4]. It shows that our method is
robust to both partial occlusions and affine distorsions, while
the reference methods is sensitive to affine-transformation al-
though it works well for partial occlusion under similarity
transformations.
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Fig. 5. Apple pair: (a) and (b) are the initial matched part; (c)
and (d) show the original shape (in blue line) overlaid with
the “registered” shape (in red dashed line)
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Fig. 6. Crown pair: (a) and (b) are the initial matched part;
(c) and (d) show the original shape (in blue line) overlaid with
the “registered” shape (in red dashed line)
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6. CONCLUSIONS

We propose an approach for affine-invariant shape matching
and recognition, which allows for partial occlusion. We apply
the Smith-Waterman algorithm for optimal local alignment of
the affine-invariant segments constructed based on the proper-
ties of CSS images. All three possible cases are tested: whole-
to-whole matching, whole-to-part matching, and part-to-part
matching. The experimental results show that our algorithm
is independent of transforms including translation, rotation,
scaling and shearing. Future work includes the experimenta-
tion with more data sets and the application of our algorithm
for shape retrieval and classification.
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