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ABSTRACT

Transformation manifolds are quite attractive for image analysis
applications that require transformation invariance properties. The
geometric structure of a transformation manifold has a profound in-
fluence on the design of processing algorithm, and the curvature is
a major parameter in the characterization of the manifold geome-
try. We propose here a procedure for the computation of an upper
bound for the maximum principal curvature of a pattern transforma-
tion manifold. We provide an analytical formulation of the curvature
bound and show that the numerical computation of this bound is
mostly dependent on the rotation parameters. Experimental results
indicate that the curvature bound of the manifold has considerable
dependence on the spatial complexity and smoothness of the gen-
erating pattern. Moreover, experiments with discretization of mani-
folds suggest that the curvature of the manifold is likely to affect the
accuracy of compact representation and sampling algorithms.

Index Terms— Pattern transformation manifolds, Riemannian
manifolds, principal curvature, transformation-invariance

1. INTRODUCTION

Modeling sets of signals via manifolds not only provides concise
representations for data, but also helps to understand their structure.
A family of signals definable by a mapping from a small set of pa-
rameters to the high-dimensional signal space constitutes a mani-
fold. Among several manifold models for visual signals, transfor-
mation manifolds are of specific interest. They define the region of
space formed by all transformations of a reference visual pattern and
hence permit transformation-invariant analysis of images exposed to
geometric transformations.

A critical factor affecting the treatment of a manifold-modeled
signal is the geometric structure of the manifold. Local proper-
ties such as differentiability and smoothness typically have signif-
icant influence on the performance of algorithms that focus on sam-
pling, manifold distance computation or image analysis. For in-
stance, in [1] Wakin et al. show that the articulation manifolds
generated by images with sharp edges are nowhere differentiable,
therefore the registration of such signals requires the utilization of
multiscale methods.

In this work, we focus on the curvature analysis of pattern trans-
formation manifolds defined by the in-plane rotation, translation and
isotropic scaling of two-dimensional patterns. Being a measure of
smoothness, the curvature of a manifold provides crucial informa-
tion for its characterization. In [2] a method is proposed for the
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numerical estimation of the principal curvature at a specified mani-
fold point and normal direction. On the other hand, we examine the
maximum value of the principal curvature over the whole manifold,
and show that an overall upper bound for the principal curvature can
be computed with a one-dimensional search over the rotation param-
eter. We illustrate the evolution of the proposed curvature bound for
characterizing manifold smoothness by experimentation on patterns
of different spatial complexity. In addition, results of image regis-
tration experiments on the discretization of pattern transformation
manifolds suggest that such a curvature bound may provide infor-
mation about the compactness or accuracy of the discrete manifold
representation.

2. ANALYTICAL FORMULATION OF THE CURVATURE
BOUND

Given a visual pattern p, we examine the curvature of the pattern
transformation manifold M generated by applying p geometric
transformations composed of rotation, translation and isotropic
scaling. Let p = p(x̃, ỹ) ∈ L2(R2) be a differentiable function
representing a visual pattern. We define our transformation mani-
fold M ⊂ L2(R2) on the compact domain Λ ⊂ R4 of parameter
vectors,

Λ = {λ;λ = (θ, tx, ty, s), θ ∈ [θl, θu], tx ∈ [txl, txu],

ty ∈ [tyl, tyu], s ∈ [sl, su]},
(1)

where θ denotes the rotation, tx and ty describe the translation in
the horizontal and vertical directions, and s represents the isotropic
scaling. ThenM is given by

M = {gλ : gλ = Uλ(p), λ = (θ, tx, ty, s) ∈ Λ} ⊂ L2(R2),

where gλ is the pattern obtained by applying the transformation Uλ
specified by λ to p. The relation between gλ and p can be formulated
by the change of variables gλ(x, y) = p(x̃, ỹ), where»
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Since p(x̃, ỹ) ∈ L2(R2) is differentiable with respect to x̃ and
ỹ and the mapping between the variables (x, y) and (x̃, ỹ) is also
differentiable, it follows that M is a differentiable manifold and a
Riemannian manifold in particular. Now, we base our analysis on the
following definition of curvature on a Riemannian manifold [3], [4]:
Let gλ ∈ M be a manifold point and Tgλ denote the tangent space
at gλ. There exists a symmetric bilinear formB : Tgλ×Tgλ → T⊥gλ
that maps every two tangent vectors to a normal vector at gλ. For
any unit normal vector η ∈ T⊥gλ , one can define a linear self-adjoint
operator Lη : Tgλ → R such that Bη(u, v) = 〈η,B(u, v)〉 =



〈u, Lηv〉; u, v ∈ Tgλ . For notational convenience, u and η will
denote unit norm vectors throughout the analysis. The maximum
principal curvature κη at gλ in the normal direction η is the norm
of the second fundamental form, i.e., the largest eigenvalue of Lη ,
given by

κη(gλ) = sup
u∈Tgλ ,‖u‖=1

〈u, Lηu〉. (3)

In order to achieve an overall curvature characterization of the man-
ifold, we seek an upper bound for the supremum value K of the
principal curvature,

K = sup
gλ∈M,η∈T⊥gλ

κη(gλ) = sup
gλ ∈ M, u ∈ Tgλ

η ∈ T⊥gλ

〈η,B(u, u)〉. (4)

Now, let gγu(t) ∈ M be the geodesic curve on M starting at gλ
with unit velocity u ∈ Tgλ at gλ, such that γu : [0, δ] → Λ,
γu(0) = λ. We assume that gγu(t) is arc-length parameterized, i.e.
‖∂tgγu(t)‖ = ‖

P
i ∂igγu(t) ∂tγ

i
u‖ = 1 for every t ∈ [0, δ], where

∂i(.) denotes partial differentiation with respect to the ith local co-
ordinate and the notation ‖.‖ denotes the L2-norm throughout the
analysis. In the computation of an upper bound for curvature, we
will make use of the following identity:

Proposition 1.

K = sup
gλ∈M,η∈T⊥gλ

κη(gλ) = sup
gλ∈M,u∈Tgλ

‖∂ttgγu(t)

˛̨
t=0
‖.

Proof. Following the standard definition [3] of the symmetric bilin-
ear form B(u, v), we have

B(u, u) = B(∂tgγu(t), ∂tgγu(t))
˛̨
t=0

=
“
∇̄∂tgγu(t)∂tgγu(t) −∇∂tgγu(t)∂tgγu(t)

” ˛̨
t=0

=
“
∇̄∂tgγu(t)∂tgγu(t)

” ˛̨
t=0

= ∂ttgγu(t)

˛̨
t=0
∈ T⊥gλ ,

where ∇ and ∇̄ denote the Riemannian connections on M and
L2(R2) respectively. The third equality follows from the fact that
gγu(t) is a geodesic curve. Then, for any unit normal vector η ∈ T⊥gλ ,

〈η,B(u, u)〉 ≤ ‖η‖‖∂ttgγu(t)

˛̨
t=0
‖ = ‖∂ttgγu(t)

˛̨
t=0
‖, (5)

where the equality in (5) is attained for the choice of unit normal as
η = ∂ttgγu(t)/‖∂ttgγu(t)‖

˛̨
t=0

.

Following the statement of Prop. 1, we would like to find a
bound A such that K = supλ∈Λ,u∈Tgλ

‖∂ttgγu(t)

˛̨
t=0
‖ ≤ A. In

[5] Jacques et al. show that1 at any point gλ ∈M

sup
u∈Tgλ

‖∂ttgγu(t)

˛̨
t=0
‖2 ≤ 〈∂ijgλ, ∂klgλ〉GikGjl, (6)

using the Einstein summation notation, where ∂igλ = ∂gλ/∂λi
and ∂ijgλ = ∂2gλ/∂λi∂λj are the first and second order partial
derivatives at gλ with respect to the local coordinates in the param-
eter domain Λ; Gij is the metric tensor on M defined by Gij =
〈∂igλ, ∂jgλ〉; and [Gij ] is the inverse of the matrix [Gij ]. Since our

1Although the proof in [5] is intended for dictionary atoms of unit norm,
the given bound is derived based on geodesic properties and is valid for Rie-
mannian manifolds in general.

pattern transformation manifold has intrinsic dimension 4, (6) im-
plies that

K = sup
λ∈Λ,u∈Tgλ

‚‚∂ttgγu(t)

˛̨
t=0

‚‚ ≤ 42 sup
λ∈Λ,i,j

‖∂ijgλ‖ sup
λ∈Λ,i,j

|Gij |.

(7)
Now, assuming that the reference pattern p(x̃, ỹ) ∈ L2(R2) is

nonzero only within the region Ĩ = [−W/2,W/2]× [−H/2, H/2],
we present an upper bound S1 such that supλ∈Λ,i,j ‖∂ijgλ‖ ≤ S1 in
Sec. 2.1, and we give in Sec. 2.2 the formulation of an upper bound
supλ∈Λ,i,j |Gij | ≤ S2. Using (7), S1 and S2 together provide an
upper bound for the maximum principal curvature as K ≤ 16S1S2.

2.1. Upper bound for supλ∈Λ,i,j ‖∂ijgλ‖

Observe that from (2),

gλ(x, y) = p(x̃, ỹ) = p
`1

s
cos θ(x− tx) +

1

s
sin θ(y − ty),

− 1

s
sin θ(x− tx) +

1

s
cos θ(y − ty)

´
,

(8)

where x̃ and ỹ are written in terms of x and y and the transformation
parameters. This gives

∂igλ(x, y) = ∂x̃p ∂ix̃+ ∂ỹp ∂iỹ (9)

∂ijgλ(x, y) = ∂x̃x̃p ∂ix̃ ∂j x̃+ ∂x̃ỹp ∂j x̃ ∂iỹ + ∂x̃ỹp ∂ix̃ ∂j ỹ

+ ∂ỹỹp ∂iỹ ∂j ỹ + ∂x̃p ∂ij x̃+ ∂ỹp ∂ij ỹ.
(10)

From (2) it follows that

∂θx̃ = −1

s
sin θ(x− tx) +

1

s
cos θ(y − ty) = ỹ, (11)

and when similar expressions for the remaining ∂ix̃ and ∂iỹ are ob-
tained, it is seen that all partial derivatives can be written in terms of
x̃, ỹ, s and θ; such that they are all independent of the translation pa-
rameters tx and ty . Now let the support region Ĩ = [−W/2,W/2]×
[−H/2, H/2] of p(x̃, ỹ) be mapped to the region I by the transfor-
mation p→ gλ. Then,

‖∂ijgλ‖2 =

Z
I

(∂ijgλ(x, y))2 dxdy

= s2

Z
Ĩ

`
∂ijgλ(x(x̃, ỹ), y(x̃, ỹ))

´2
dx̃dỹ,

(12)

where the Jacobian of the transformation is related to the scale pa-
rameter as

˛̨̨
∂(x,y)
∂(x̃,ỹ)

˛̨̨
= s2. Then from (12) it is easy to show that

sup
λ∈Λ,i,j

‖∂ijgλ‖ ≤
√
WHsu sup

λ∈Λ,i,j,x,y
|∂ijgλ(x, y)|. (13)

Examination of the partial derivatives of x̃ and ỹ with respect to the
transformation parameters as in (11) indicates that |∂ix̃|, |∂iỹ| ≤
max(W,H) max(sl

−1, 1), and |∂ij x̃|, |∂ij ỹ| ≤ 2 max(W,H)
max(s−2

l , 1) for every i, j. From equation (10)

|∂ijgλ(x, y)| ≤ 4 sup
z,w
|∂zwp| sup

z,i
|∂iz|2 + 2 sup

z
|∂zp| sup

z,i,j
|∂ijz|,

where z, w ∈ {x̃, ỹ}. Combining these with (13) gives

sup
λ∈Λ,i,j

‖∂ijgλ‖ ≤ S1 =
√
WHsu

„
4 sup
z,w
|∂zwp| max(W 2, H2)

max(s−2
l , 1) + 4 sup

z
|∂zp|max(W,H) max(s−2

l , 1)

«
.



2.2. Upper bound for supλ∈Λ,i,j |Gij |

We would like to find an upper bound for the norm of the entries
of the matrix [Gij ] = [Gij ]−1. Both [Gij ] and [Gij ] are symmet-
ric positive definite matrices, their diagonal entries are positive, and
the eigenvalues of the two matrices are the inverses of each other.
Therefore, the magnitudes of the entries of [Gij ] are bounded by

|Gij | ≤ tr([Gij ]) =

4X
k=1

λ−1
k ([Gij ]) ≤ 4λ−1

min([Gij ]), (14)

where λk(.) denotes the kth eigenvalue of a matrix, and λmin(.)
denotes the smallest eigenvalue of the matrix. It is possible to show
that (see Sec. 3.2) the entries of the matrix [Gij ] involve only s and
θ, and not the translation parameters, therefore can be represented as
[Gij(θ, s)]. Moreover, the entries of [Gij ] attain their largest mag-
nitudes when the scale s is at its smallest value sl. Combining this
observation with (14) gives the following result:

sup
λ∈Λ,i,j

|Gij | ≤ S2 =
4

infθ(λmin([Gij(θ, sl)]))
. (15)

3. NUMERICAL COMPUTATION OF THE CURVATURE
BOUND

Although the analytical bounds derived in Sec. 2 establish the rep-
resentation of a curvature bound in terms of the reference pattern
and transformation parameters, our derivation of the terms S1 and
S2 involves extremal values of the image and transformation param-
eters, which may consequently cause the bound to be loose in some
cases. However, we now discuss how a sharper curvature bound can
be computed numerically. From (6) one can obtain

K2 ≤
4X

i,j,k,l=1

sup
λ∈Λ
||∂ijgλ|| sup

λ∈Λ
||∂klgλ|| sup

λ∈Λ
|Gik| sup

λ∈Λ
|Gjl|. (16)

Based on this formulation, the numerical calculation of a curvature
bound is possible by computing supλ∈Λ ||∂ijgλ|| and supλ∈Λ |Gij |
for all combinations of (i, j), and then calculating the summation
in (16). In particular we show that the bound is independent of
the translation parameters. It further has a simple dependency on
the scale parameter, which permits to cast the bound computa-
tion as a one-dimensional search over the rotation parameter. We
describe now the numerical computation of supλ∈Λ ||∂ijgλ|| and
supλ∈Λ |Gij | for all possible pairs (i, j).

3.1. Computation of supλ∈Λ ||∂ijgλ||

Combining (10), (12) and the fact that the partial derivatives ∂ix̃,
∂iỹ, ∂ij x̃, ∂ij ỹ are independent of the translation parameters tx, ty;
supλ∈Λ ||∂ijgλ|| can already be estimated by a two-dimensional
search over the rotation and scale parameters θ, s. Now we show
that one can also dispense with the search over the scale s.

In the first case “λi = λj = θ”, all partial derivatives ∂ix̃, ∂j x̃,
∂iỹ, ∂j ỹ, ∂ij x̃, ∂ij ỹ are independent of s, hence, the integration
in (12) is of the form ||∂ijgλ||2 = s2F (θ). Therefore ||∂ijgλ||
reaches its supremum at s = su. Similarly, if we examine the
second case “λi = θ, λj 6= θ”, then ∂ix̃, ∂iỹ are independent of
s, i.e. in the form f(θ, x̃, ỹ); and ∂j x̃, ∂j ỹ, ∂ij x̃, ∂ij ỹ are of the
form f(θ, x̃, ỹ) s−1. Therefore, the integration in (12) has the form
||∂ijgλ||2 = s2

R
Ĩ
g(θ, x̃, ỹ)2 s−2 dx̃dỹ = F (θ), and is indepen-

dent of the scale parameter. In a similar manner, one can show that
||∂ijgλ|| reaches its supremum at s = sl in the other cases.

3.2. Computation of supλ∈Λ |Gij |

We now show that bounds for the magnitudes of the entries of [Gij ]
can also be estimated by a one dimensional search over the rotation
parameter. From (9) one can construct the metric tensor as

Gij = s2

Z
Ĩ

(∂x̃p ∂ix̃+ ∂ỹp ∂iỹ)(∂x̃p ∂j x̃+ ∂ỹp ∂j ỹ) dx̃dỹ, (17)

for instance, Gθθ = s2
R
Ĩ
(∂x̃p ỹ − ∂ỹp x̃)2 dx̃dỹ. Since all entries

of [Gij ] are independent of the translation parameters tx, ty , one
can use the notation [Gij(s, θ)]. Moreover, all entries can be de-
composed in the form Gij(s, θ) = fij(s)Fij(θ), where f11 = s2;
f1j = fj1 = s if j 6= 1; and fij = 1 if i, j 6= 1. If we denote
the matrix with entries Fij(θ) by [Fij(θ)], then from the linearity
of the determinant with respect to the rows and columns, we have
det([Gij(s, θ)]) = s2 det([Fij(θ)]). Now let us denote the (i, j)th

minor of [Gij(s, θ)] by MGij(s, θ), and the (i, j)th minor of [Fij(θ)]

by MF
ij (θ). Then, one can write MGij(s, θ) = mij(s)M

F
ij(θ),

where mij(s) ∈ {1, s, s2} ∀i, j. The magnitude of the entries of
the matrix [Gij(s, θ)] are given by

|Gij(s, θ)| =
|(−1)i+j det([MGji(s, θ)])|
| det([Gij(s, θ)])|

=
|mji(s)M

F
ji(θ)|

|s2 det([Fij(θ)]|

= pji(s)
|MF

ji(θ)|
|det([Fij(θ)]|

= pji(s)|F−1
ij (θ)|,

where pij(s) = mij(s)/s
2 ∈ {1, s−1, s−2} ∀i, j; and [F−1

ij (θ)]
is the inverse of the matrix [Fij(θ)]. It is clear that all entries of
[Gij(s, θ)] attain their largest magnitude at s = sl. Therefore it is
possible to find upper bounds for the entries with a one-dimensional
search over the rotation parameter θ. This result and the conclusions
of Sec. 3.1 together provide a solution for the computation a global
bound for the principal curvature through (16).

4. EXPERIMENTAL RESULTS

In this section, we experimentally examine the curvature bounds of
transformation manifolds of patterns with varying characteristics.
The experiments are conducted on the transformation manifolds of
patterns derived from the four images shown in Fig. 1. In all exper-
iments, two different curvature measures for the examined transfor-
mation manifold are calculated: Firstly, the computational procedure
explained in Sec. 3 is employed to find a global upper bound for the
principal curvature that is valid over the whole manifold. Then, the
local bound (6) for the maximum principal curvature of a point is
computed at sufficiently many randomly selected manifold points,
and the largest of these local bounds is taken as a measure of man-
ifold curvature (denoted as maximum local curvature bound in the
results). These two curvature bounds are displayed together in all of
the following experimental results.

First, the relation between the smoothness of a pattern and the
curvature of its transformation manifold is examined. A sequence
of patterns are created from the “leaves” image shown in Fig. 1(a)
(downsampled to 57×73 pixels) by applying a 3×3 low-pass filter
successive times, and curvature bounds for the transformation man-
ifolds of each of these patterns are computed. All transformation
manifolds are defined in the parameter domain θ ∈ [−π, π]; tx, ty ∈
[−30, 30]; s ∈ [0.5, 1.5]. In Fig. 2 the curvature bounds are dis-
played with respect to the number of filters applied to obtain the pat-
tern. The results indicate that the local and global curvature bounds
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Fig. 1. Patterns used in experimentation

change in a consistent manner and both decrease as the degree of fil-
tering on the pattern is increased. This confirms that the smoothness
of the manifold is directly related to the smoothness of the pattern.

Then, in a similar experiment, the influence of the complexity of
the reference pattern over the manifold curvature is investigated. An
expansion of the original image in terms of the atoms of a redundant
dictionary is obtained using the Tree-Based Pursuit algorithm [6].
Then, following the order of the decomposition, the sequence of suc-
cessively refined approximations of the original image is constructed
from its projections on dictionary atoms, and curvature bounds are
computed for the transformation manifolds of each of the patterns
in the approximation sequence. The experiment is performed on the
“cell” and “face” images shown in Fig. 1(b) and 1(c). Both images
are downsampled to 32×32 pixels, and the transformation mani-
folds are defined over the parameter range θ ∈ [−π, π]; tx, ty ∈
[−20, 20]; s ∈ [0.5, 1.5]. The curvature bounds with respect to the
number of atoms used in the approximation are plotted in Fig. 4(a)
and 4(b), for the “cell” and “face” patterns respectively. As the num-
ber of atoms in the representation is increased, the image approxima-
tion includes more spatial detail. The figures show that the maximum
local curvature bound follows the increase in the spatial complexity.
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Fig. 2. Curvature bounds for
the transformation manifolds of
successively filtered patterns
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Fig. 3. Curvature bounds and
the registration errors given by
the manifold discretizations
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Fig. 4. Curvature bounds for transformation manifolds of progres-
sive approximations of two patterns in a dictionary

Finally, the influence of the curvature of a manifold on its

amenability to algorithmic treatment is searched in a last experi-
ment. The transformation manifolds of the four patterns displayed
in Fig. 1 are sampled using the Registration-Efficient Manifold
Discretization (REMD) algorithm proposed in [7]; and the registra-
tion error yielded by each discretization, which is regarded as the
performance measure of the REMD algorithm, is compared to the
curvature of the manifold. All images in Fig. 1 are downsampled to
32×32 pixels, normalized, and low-pass filtered to assure smooth-
ness. The transformation manifolds of all images are constructed
over the parameter domain θ ∈ [−π, π]; tx, ty ∈ [−15, 15]; s = 1,
and 16 samples from each manifold are selected with the REMD
algorithm. The registration error for each discretization is com-
puted by finding the average Euclidean distance between randomly
selected manifold points and their corresponding nearest manifold
samples. The two curvature bounds are plotted together with the
registration error in Fig. 3. The curvature bounds are in general
accordance with the registration performance of the discretization.
This suggests that the curvature of a transformation manifold may
affect the difficulty of processing or representing it.

5. CONCLUSIONS

We have proposed a procedure for computing an overall upper bound
for the maximum principal curvature of the transformation manifold
generated by the rotation, translation and isotropic scaling of a visual
pattern. We show that the computation of such a global curvature
bound is achievable through a one-dimensional search over the rota-
tion parameter, although the manifold has an intrinsic dimension of
four. We experimentally show that an increase in the spatial intricacy
of the pattern in general leads to a rise in the manifold curvature.
Moreover, the experimentation on the sampling of transformation
manifolds suggests that the curvature bound of a manifold may bear
information about its liability to treatment or the ease of representing
it through a discretization.
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