

Instructions for use

Title O(1) bilateral filtering with low memory usage

Author(s) Igarashi, Masaki; Ikebe, Masayuki; Shimoyama, Sousuke; Yamano, Kenta; Motohisa, Junichi

Citation 2010 17th IEEE International Conference on Image Processing (ICIP), 3301-3304
https://doi.org/10.1109/ICIP.2010.5652046

Issue Date 2010-09

Doc URL http://hdl.handle.net/2115/48855

Rights

© 2010 IEEE. Reprinted, with permission, from Igarashi, M., Ikebe, M., Shimoyama, S., Yamano, K., Motohisa, J.,
O(1) bilateral filtering with low memory usage, 2010 17th IEEE International Conference on Image Processing (ICIP),
Sep. 2010. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of Hokkaido University products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-
permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting
it.

Type proceedings (author version)

File Information ICIP2010_3301-3304.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

O(1) BILATERAL FILTERING WITH LOW MEMORY USAGE

Masaki Igarashi, Masayuki Ikebe, Sousuke Shimoyama, Kenta Yamano, Junichi Motohisa

Graduate School of Information Science and Technology
Hokkaido University, Sapporo, Japan

ABSTRACT

We propose a O(1) algorithm for bilateral filter with low
memory usage. Bilateral filter can be converted into weighted
histogram operation. Applying line buffers of column his-
tograms, we can reduce the number of calculation needed
to construct recursive center-weighted local histogram. Also
our method have advantage in terms of memory requirements.
We used a 2-GHz CPU with our method and achieved one
million pixels per 0.5 sec operation and high PSNR over
40 dB without the need for temporary frame buffers or ad-
ditional instructions (downsampling, SIMD instructions, or
multi-thread operations).

Index Terms— Bilateral filter, constant time algorithm

1. INTRODUCTION

Tomasi et al. proposed a bilateral filter, which is an edge pre-
serving smoothing filter [1]. It has been used for several appli-
cations such as noise reduction, dynamic range compression
[2], and estimation of illuminance in Retinex. The output im-
ages are obtained by using weight averaging in the spatial and
range (intensity) domains.

Until recently, the bilateral filter was computationally
expensive because brute-force implementation has a O(r2)
computational cost per output pixel (r: filter radius). Weiss
developed the O(log r) algorithm by more efficiently calcu-
lating the local histogram. However, the processing speed
depends on the filter radius. Moreover, the spatial weight of
this method is limited to the constant weight not the center-
weighted kernel. Porikli proposed the O(1) bilateral filter
using an integral histogram [3]. Yang et al. also proposed a
O(1) algorithm [4]. These methods require several times the
size of image memory.

In this paper, we describe a new O(1) bilateral filtering
method that uses less memory space. Our method requires
only several line buffers.

The authors would like to extend their appreciation to Kensuke Yamaoka
and Yuji Osumi of Dai Nippon Printing Co.,Ltd. for their helpful guidance
and insightful discussions regarding the development of a processing system
in this research.

2. BILATERAL FILTERING

A bilateral filter contains a spatial and a range kernel. Let p
denote a pixel in the image, K(p) be a set of pixels in the
kernel of p, Ip be the intensity of pixel p. Bilateral filter
updates intensity value as follows:

Inew
p =

∑
p′∈K(p) ws(p, p′)wr(Ip, Ip′)Ip′

∑
p′∈K(p) ws(p, p′)wr(Ip, Ip′)

(1)

where ws and wr are the weighting functions in the spatial
and range domains respectively. Usually, a constant and a
center-weighted function are used for ws and the Gaussian
weighting function is used as wr.

2.1. Conversion of bilateral filter into weighted histogram
operation

In this section, we convert a bilateral filter into a weighted
histogram operation. Let Bmax be the number of bins in the
histogram. Generally, a histogram Hp from kernel K(p) is
given as follows:

b ∈ {0, 1, · · · , Bmax − 1} (2)

Bb =
[bImax

Bmax
,
(b + 1)Imax

Bmax

)
(3)

Hp(b) =
∑

p′∈K(p)

fb(Ip′) (4)

where Hp(b) is the b-th bin of the histogram and fb is defined
as fb(x) = if x ∈ Bb then 1 else 0.

Here, we define the weighted histogram Hw as follows:

Hw
p (b) =

∑

p′∈K(p)

fb(Ip′)ws(p,p′) (5)

Unlike the standard histogram, a weighted histogram stores
spatial weight ws instead of the number of pixels for each
tone value. So we can rewrite Eq(1) for a bilateral filter in the
following way.

Inew
p =

∑
b Hw

p (b)wr(Ip, bImax

Bmax
) bImax

Bmax∑
b Hw

p (b)wr(Ip, bImax

Bmax
)

(6)

This means that we create a O(1) bilateral filtering if the
weighted histogram can be calculated in constant time.

+

-
h01top

+
-

h01bottom

…

Line buffers for h01s

update
=

+

-h02 h12

Line buffer for h02s

…

-

update

h01top

h01bottom

h02
+

update - +
h12left

h22

h12right

h12 and h22 don’t need line buffers,

because these calculations require
no vertical processing.

update

Fig. 1. Composition of recursive histogram h22 : HR<2,2>

2.2. O(1) Bilateral Filtering with Constant Spatial Weight

We are currently researching a 2D bilateral filtering in which
the spatial filter has a constant weight (which is called box
spatial filter). Given that the shape of a kernel is rectangular
and pixel p = (x, y), the kernel is

K(x, y) = {(x + i, y + j) | − r ≤ i, j ≤ r} (7)

where r is the radius of the filter.
Assume that ws is constant, the weighted histogram Hw

is the equal to standard histogram H . The standard histogram
can be easily computed in constant time [5].

2.3. O(1) Bilateral Filtering with center-weighted local
histograms

Here, we define recursive histogram HR as follows:

HR<0,0>
x,y (b) = fb(Ix,y) (8)

HR<0,n>
x,y (b) =

r∑

i=−r

HR<0,n−1>
x,y+i (b) (9)

HR<m,n>
x,y (b) =

r∑

i=−r

HR<m−1,n>
x+i,y (b) (10)

where cr is a normalization coefficient defined by cr = 1
2r+1 .

HR<1,1>
x,y is the standard histogram. We can take HR<m,n>

x,y

as the repetition of the moving sum for each bins of the his-
togram. As m and n increase, the weight of the recursive
histogram approaches the Gaussian distribution centered at
(x, y) according to central limit theorem.

When we take into consideration the overlap region be-
tween adjacent kernels, we can rewrite Eqs. 8-10 as follows:

HR<0,n>
x,y (b) = HR<0,n>

x,y−1 (b)−HR<0,n−1>
x,y−r−1 (b)

+ HR<0,n−1>
x,y+r (b) (11)

HR<m,n>
x,y (b) = HR<m,n>

x−1,y (b)−HR<m−1,n>
x−r−1,y (b)

+ HR<m−1,n>
x+r,y (b) (12)

This means that we can obtain histogram HR<m,n>
x,y by re-

cursively combining the pre-calculated histogram. In addi-
tion, we found that the amount of calculation necessary for

the histogram is independent of the filter radius r. However,
in the recursive histogram calculation, if x-direction process-
ing of all rows are performed after y-direction processing of
all columns, frame buffers are indispensable. Also, these pro-
cessing is not suitable for scan line processing. Here, focusing
on line buffers of column histograms, we propose the constant
time recursive histogram calculation without frame buffers.
We present a pseudo-code of the algorithm for a recursive
histogram h22 (HR<2,2>

x,y) calculation in algorithm 1. Then,
we show a diagram about composition of h22 in Fig.1.

Algorithm 1 Calculate histogram h22 (HR<2,2>) in constant
time.

width: width of image.
h02[width]: histogram HR<0,2> array
h01top[width]: histogram HR<0,1> array
h01bottom[width]: histogram HR<0,1> array
for i = 0 to height do

if i==0 then
initialize h02[j]
initialize h01top[j], h01bottom[j]

else
for j = 0 to width do

remove pixel(i− r − 1, j) from h01top[j]
add pixel(i− 1, j) to h01top[j]
remove pixel(i− 1, j) from h01bottom[j]
add pixel(i + r, j) to h01bottom[j]
h02[j] = h02[j]− h01top[j] + h01bottom[j]

end for
end if
h22, h12left, h12right: histograms
for j = 0 to width do

if j == 0 then
initialize h22, h12left, h12right

else
h12left = h12left − h02[j − r − 1] + h02[j − 1]
h12right = h12right − h02[j − 1] + h02[j + r]
h22 = h22− h12left + h12right

end if
end for

end for

According to Eq.11, HR<0,n>
x,y is calculated easily by

keeping the pre-calculated value of HR<0,n>
x,y−1 . Considering

the moving direction of a filter window, we should keep
{HR<0,n>

0,y−1 , · · · ,HR<0,n>
width−1,y−1}. For h22 (HR<2,2>) cal-

culation, we prepared three line buffers. One is used for
the h02 (HR<0,2>) process. while the others are used for
the h01top (HR<0,1>

top) and h01bottom (HR<0,1>
bottom) processes.

The h01 line buffer stores the h01s of the previous line. The
h01top and the h01bottom are updated by adding and sub-
tracting pixels (Fig.1 left). Because the h02s of previous
line have been stored to line buffer, the h02 can be updated
by adding/subtracting the h01top and the h01bottom (Fig.1
center). Updated column histograms(h01 and h02) are stored
in the line buffers again.

The h12 can be updated by adding and subtracting the
pre-calculated h02 in the line buffer. Adding and subtracting
the h12left and the h12right to/from the h22 enables us to
obtain the updated h22 (Fig.1 center, right). These processes
are independent of the filter kernel size and require no frame
buffers.

2.3.1. Memory usage of proposed method

Table 2 shows the comparison result of the memory usage
between proposed method and two conventional methods re-
ported in [4]. Even though the box spatial filter is used for
8-bit grayscale images, these conventional methods requires a
large amount of memory which is proportional to image size
(number of pixels). For box and center-weighted filter, our
method uses only line buffers of histograms and several tem-
porary histograms, therefore it requires low amount of mem-
ory which is proportional to image width not height.

3. EXPERIMENTAL RESULTS

We tested the proposed bilateral filter method and evaluated
the processing time and image quality. We used an Athlon
Dual Core CPU (2 GHz). We did not use downsampling, mul-
tithread operations, or SIMD instructions.

The computation times are given in Fig. 2. We found that
the processing time of the proposed method is independent of
the filter radius. In a method similar to Durand’s method [2],
we can optimize weighting in the range domain. By reducing
the number of bins, the weighted histogram can be calculated
more quickly.

We analyzed the filter accuracy by performing filtering
operation and by calculating the PSNR. For the analysis, the
filtering image with exact box and gaussian spatial weight
were set to the source images. Table. 1 shows PSNR of
bilateral filters with center weighted kernel (using histogram
HR<n,n>). For HR<n,n> calculation, 2n−1 line buffers are
required in our method. We found the histograms n = 2, 3
provide enough PSNR values (over 40 dB).

Fig. 2. Processing time of our methods (image size:
800×600, σ2

r = 0.016).

Fig. 3. PSNR accuracy of proposed bilateral filter (image
size: 800×600, filter radius: 5)
.

Figure 3 shows PSNR graphs using proposed bilateral fil-
ters with box and center-weighted kernel (using histogram
HR<2,2>) and exact box and gaussian kernel. As visible,
even the low bins of histogram provide high PSNR values
(over 45 dB). Figure 4 shows the kernel form of our bilateral
filter with HR<2,2>. An adaptive kernel is formed around the
edge of the image, and preserving the edges smoothes out the
output image. Figures 5(a)-(d) show the result of applying
the proposed method to an image. We cannot distinguish be-
tween the resulting images obtained by proposed method and
exact images. We found that the proposed method achieved
smoothing, while preserving the edge.

4. CONCLUSION

We proposed a O(1) (constant time) bilateral filtering method
with low memory usage by applying line buffers of column

(a) input image (b) spatial weight (c) intensity weight (d) product of spatial
and intensity weight (e) output image

Fig. 4. Kernel form of proposed bilateral filter using HR<2,2> and its image processing

Table 1. PSNR[dB] dependent on r and m (r in Eqs.8-10, m of HR<m,m>).
(a) 256-bin histogram

r
1 3 7 15 31

m 2 54.8 57.0 56.8 56.5 55.2
3 60.6 61.3 61.0 60.8 60.2
4 58.1 61.0 60.2 60.2 58.3
5 56.1 61.3 60.0 59.8 57.9

(b) 8-bin histogram
r

1 3 7 15 31
m 2 50.2 48.4 46.8 45.2 43.7

3 50.6 48.3 46.6 45.0 43.4
4 49.9 48.0 46.3 44.7 43.1
5 49.3 47.7 46.0 44.5 42.8

histograms. We used a 2-GHz CPU with our method and
achieved one million pixels per 0.5 sec operation and high
PSNR over 40 dB without the need for temporary frame
buffers or additional instructions (downsampling, SIMD in-
structions, or multi-thread operations).

Table 2. Comparison of memory usage for bilateral filtering.
B is the number of bins in the histogram. W and H are the
image width and height respectively.

method Porikli [3] Yang [4] proposed
box B×W×H 4×W×H B×W + B
HR<2,2> 3×(B×W + B)

5. REFERENCES

[1] C. Tomasi and R. Manduchi, “Bilateral filtering for gray
and color images,” in ICCV ’98, 1998, pp. 839–846.

[2] Frédo Durand and Julie Dorsey, “Fast bilateral filtering
for the display of high-dynamic-range images,” in SIG-
GRAPH ’02. 2002, pp. 257–266, ACM.

[3] Porikli F., “Constant time o(1) bilateral filtering,” in IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR) 2008, 2008, pp. 1–8.

[4] N. Qingxiong Yang, Kar-Han Tan Ahuja, “Real-time o(1)
bilateral filtering,” in IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR)
2009, 2009, pp. 557–564.

[5] Perreault S. and Hebert P., “Median filtering in constant
time,” Image Processing, IEEE Transactions on, vol. 16,
pp. 2389–2394, 2007.

(a) Original image. (b) Our box bilateral (same as
exact).

(c) Our center-weighted
bilateral.

(d) Exact gaussian bilateral.

Fig. 5. Bilateral filtering with box and center-weighted spatial
kernels (size: 600x800).

