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ABSTRACT 
We present experimental results of digital super resolution (DSR) 
techniques on low resolution data collected using PANOPTES, a 
multi-aperture miniature folded imaging architecture. The flat form 
factor of PANOPTES architecture results in an optical system that 
is heavily blurred with space variant PSF which makes super 
resolution challenging. We also introduce a new DSR method 
called SRUM (Super-Resolution with Unsharpenning Mask) which 
can efficiently highlight edges by embedding an unsharpenning 
mask to the cost function. This has much better effect than just 
applying the mask after all iterations as a post-processing step. 

 
1. INTRODUCTION 

Capturing high quality images and videos requires high-cost and 
bulky optical elements whose physical sizes dictate the light-
gathering capability and the resolving power of the imaging 
system, a constraint that has persisted since their invention  [1]. In 
recent years there has been a big trend toward generating high 
resolution (HR) images/videos by fusing information from a series 
of low resolution (LR) image/video frames. This trend has 
activities in two main research areas, multiplexed computational 
imaging (MCI) and digital super resolution (DSR)  [2]. MCI 
primarily focuses on joint design of optics, detector and 
reconstruction algorithm. On the other hand, DSR deals with 
software techniques for reconstructing a HR image from a set of 
blurry, undersampled and noisy LR images. 
Most DSR techniques in the literature are designed to operate on 
LR images having motion in their contents due to the camera or 
scene movement. These techniques employ the phase variation 
between the frequency spectrums of captured images to remove 
aliasing. By contrast, motion-free DSR techniques use variations in 
the amplitude of the transfer function to make resolution 
enhancement. In this paper, we focus on the methods that rely on 
variations in the phase of DSR system transfer function resulting 
from inter-frame subpixel shifts. 
A multi-aperture imaging system architecture called PANOPTES 
(Processing Arrays of Nyquist-limited Observations to Produce a 
Thin Electro-optic Sensor) was proposed  [1] and consists of 
several tiled sub-imagers, each with a built-in steering mechanism. 
PANOPTES incorporates intelligent image acquisition adaptability 
and real-time resource allocation capability based upon the 
information content of the scene. In  [3] an unobscured, folded 
architecture that utilizes off-axis tilted paraboloid as a sole power 
surface was demonstrated for the first time ever at a small scale 
( ), as shown in Fig. 1, but due to its unique 
optics the system is heavily blurred and has space variant PSF that 
makes it challenging to use existing DSR algorithms. Experimental 
validation integration capabilities of PANOPTES architecture 
were demonstrated in  [3]. 

 

 
Fig. 1. Photographs of (a) a single uncoated PANOPTES sub-
imager and (b) a tiled array of PANOPTES sub-imagers 
arranged on a large CCD detector.  

In an imaging system when the detector Nyquist cutoff frequency 
is appreciably lower than the optical cutoff frequency, there exists 
observable amount of aliasing in the captured images. Aliased 
components contain valuable high frequency information and their 
existence guarantees the possibility of getting enhancement by 
super resolution. Fig. 2 demonstrates the typical DSR regime from 
the perspective of the optical and detector modulation transfer 
function (MTF) plots. It is clear from this figure that the detector-
limited nature of imaging system results in aliasing. DSR allows 
recovery of this aliased information and in principle it is possible 
to capture image data up to the optical cutoff from multiple sub-
pixel shifted low-resolution images. Hence it becomes important to 
identify the region in the image plane where the retrievable optical 
spatial frequencies exceed the detector Nyquist cutoff. This region 
is termed the sweet spot of the PANOPTES sub-imager which is a 
patch in the center of the captured images. 
While there are some papers on restoring a single image degraded 
by spatially variant blur (e.g.  [4]) and also a few works on DSR for 
space variant images (e.g. [5]), to the best of our knowledge no 
paper has shown its results on real space variant images captured 
by a flat camera. In this paper we illustrate the reconstruction 
results of several well-known DSR techniques in order to validate 
the proposed mechanism in PANOPTES architecture. We first 
show the results of these techniques on a synthetic data and then on 
a central image region surrounding the sweet spot in an image set 
containing 121 shifted images. These images are captured by a QI-
Cam 4000R charge-coupled device (CCD) scientific camera 
detector with F/# of 2 and detector pixel pitch of   [3]. Also 
we illustrate a new method called SRUM (Super-Resolution with 
Unsharpenning Mask) which results HR images with higher 
contrast than some other well-known DSR methods through 
embedding an unsharpenning mask into the iteration process. 
This paper is organized as follows: Section 2 explains the most 
common forward model used to formulate DSR methods. Section 3 
describes a few DSR techniques. In section 4 we introduce the 
SRUM method. Finally section 5 depicts the experimental results 
of the SRUM and other methods on both synthetic and real image 
sets. 
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Fig. 2. An example of digital super-resolution (DSR) regime. 
DSR allows recovery of aliased information, caused by detector 
limited performance of an imaging system, up to the optical 
cutoff frequency using sub-pixel shifted observations. 

2. DSR FORWARD MODEL 
The linear forward imaging model in the spatial domain which 
illustrates the process of generating LR images from a HR image 
can be defined as: 

 (1) 

where  is the original HR image of size  and  is the kth 
of total  observed LR images of size . According to this 
model, the HR image is first zoomed, rotated and shifted 
horizontally and vertically by the amounts of , ,  and  
respectively, then convolved with the point spread function (PSF) 
of the lens and other blurring effects such as motion, then 
downsampled by a factor of , and finally corrupted by noise to 
get the LR image. We have:  and . In matrix 
notation, (1) can be written as: 

 
 (2) 

where  is the input image in lexicographical notation resulting in a 
vector of size ,  and  are kth warping and blurring 
operators of size ,  is the downsampling matrix of 
size , and  and  are the vectors of kth LR image 
and noise respectively, both of size . Typically  and 

 are the same for all LR images. Alternatively, the model in (2) 
can be expressed in terms of the entire set of LR images as: 

 (3)  
where  and  are vectors 
of size  and  is a matrix of size 

. 
The estimation of motion information, which is referred to as 
image registration, is of great importance in super resolution and 
its precision has a direct influence on the reconstruction quality. 
 

3. OVERVIEW OF DSR TECHNIQUES 
Irani and Peleg  [6] proposed an iterative back-projection (IBP) 
approach by the use of steepest decent optimization technique. 
First an initial estimate of the HR image is calculated using a 
simple method like interpolation. Then by simulating the imaging 
process, the estimated HR image is projected onto the LR image 
plane to obtain a set of LR images corresponding to the observed 

LR input images. Finally the differences between the observed and 
estimated LR images are back-projected onto the HR image plane 
to update the HR image. This process is repeated iteratively. So we 
have: 

  
 (4) 

Here  is the estimated HR image at the iteration ,  is the 
gradient of the cost function  (refer to (6)) at the iteration , and  
called step size is a constant that dictates the strength of the 
updating. This method is basically derived based upon minimizing 
a least-squares (LS) cost function which minimizes the L2 norm of 
the residual vector: 

  
 (5) 

Various modifications of this method have appeared in the 
literature, depending on the type of norm function, existence or 
nonexistence of a regularization term, and steadiness or variability 
of the step size parameter . Most often a regularization term is 
added to the cost function in order to more stabilize the inverse 
problem of estimating  from : 

 (6) 
Hardie et al.  [7] proposed a maximum a posteriori (MAP) 
framework for jointly estimating the high-resolution image and the 
registration parameters by considering noise and priors as Gaussian 
random variables. The cost function used is again the minimum of 
least-square error and the iteration algorithm is steepest descent. At 
each iteration the best updating parameter is found through 
minimizing the cost function. Then in  [8] they updated their work 
by using the Keren registration method  [9] instead of estimating 
and updating the registration parameters at the iterations. 
Elad and Feuer  [10] introduced using LS cost function with L2-
norm for reconstructing of continuous image sequences from the 
view point of adaptive filtering theory. The cost function here is a 
function of time and the assumed correlation between the 
continuous movie frames is applied to simplify the equations. 
Farsiu et al.  [11] proposed a robust method by using L1-norm 
instead of L-2 norm in both the measurement and the 
regularization terms. They showed that the L1-norm converges to 
median estimation which has the highest breakpoint value. In this 
work, an edge preserving regularization term called Bilateral-TV is 
used. 
In  [2] El-Yamani and Papamichalis suggested applying the 
Lorentzian error norm to better suppress the effect of large errors 
in the cost function. 
We provide a comparison of reconstruction from selected methods 
in Section 5. 
 

4. SRUM METHOD 
In this section, we introduce a new super-resolution method called 
SRUM. By adding an unsharpenning mask to the IBP method 
explained in the previous section, we can achieve a reconstruction 
result that has a better visual perception for many sorts of images 
through highlighting edges and details. If  is an image, then: 

 (7) 
will be an image with more emphasis on the edges  [12]. Herein  
is a constant and  is a high-pass filter. The first term is added to 
prevent loss of the background tonality caused by the second term 
because the highpass filter zeros out the dc term. To use this 
technique with the IBP method, we embed a matrix  into the cost 
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function in (6). We also add a regularization term to control the 
smoothness of the reconstructed image: 

  
 (8) 

where  is the identity matrix, and  and  are the convolution 
kernels related to the filter  in (7) and another highpass 
filter , respectively. One choice for these filters is the 
Laplacian operator which is a second derivative mask with some 
choices as below: 

 

We used the third matrix in our implementation. Now the gradient 
is changed to: 

 (9) 
and the iteration equation is replaced by: 

 (10) 
Hence at each iteration instead of the HR image itself, a more 
contrasted version of the HR image is projected onto the LR image 
plane. As we shown in section (5), this has absolutely different 
effect than just applying the mask after all iterations as a post-
processing step. 
The optimal value for the step size parameter  at the nth iteration 
can be found by the following approach: 

 (11) 

and after some manipulation, we can evaluate as: 

 

where: 
,     (13) 

Results on the application of synthetic and real data are shown in 
the next section. 
 

5. RECONSTRUCTION RESULTS OF 
DIFFERENT ALGORITHMS 

In this section we show the results of selected and modified DSR 
techniques mentioned in the two previous sections on synthetic LR 
images generated from a HR image through the assumed 
observation model and also on the real images taken by a flat low 
quality camera  [1] [3] in order to validate the PANOPTES system 
architecture. The methods compared here are MAP  [7] [8], IBP  [6], 
Robust  [11], nonlinear interpolation  [13] followed by Wiener 
filtering and SRUM (section 4). 
Fig. 3 depicts DSR reconstruction for a synthetic image set. The 
ground truth HR image is presented in Fig. 3(a).  By means of 
translational warping, blurring by a Gaussian of variance 1, 
downsampling by a factor of 4 and adding Gaussian noise of 
variance 25, 16 LR images like Fig. 3(b) are generated which is 
zoomed in to the size of HR image through zero order interpolation 
for better comparison. Fig. 3(c) illustrates the MAP reconstruction 
result. IBP and Robust methods also produce very similar results to 
MAP and are slightly better than of nonlinear interpolation 
method. So by using the exact prior information about warping, 
blurring and noise, MAP, IBP and Robust methods make very 
similar results with comparable signal to noise ratios. Also if there 
is ambiguity in the forward model (e.g. lens PSF, registration 
parameters, noise information, etc.) that is almost uniform for the 
entire LR images, all these three DSR methods have similar 

behavior. On the other hand, if ambiguity in the forward model 
exists only in a few LR images, Robust method has a better 
tolerance because of using L1 norm in its cost function. To show 
this, we repeat the previous experiment but this time one of LR 
images has been rotated, zoomed in, blurred with a different PSF 
and considered with absolutely wrong shift parameters, as shown 
in Fig. 4(a). The reconstruction results for MAP and Robust 
methods are presented in Fig. 4(b) and Fig. 4(c), respectively. As 
seen, the errors in the MAP image are evident while the Robust 
image is still clean. 
Fig. 5 and Fig. 6 show the results of SRUM method with different 
values of  for the example in Fig. 3 and also for a real image 
set  [14] having 26 LR images. Keren registration method  [9] 
implemented in EPFL software package  [15] was employed for 
registering the images. As seen, the effects of adding the 
unsharpenning mask are increasing the image contrast and 
producing sharper edges which give a better visual perception for 
many kinds of images. Fig. 7 shows a comparison between the 
effects of embedding this mask into each iteration and adding it as 
a postprocessing step. 
One of the most challenging issues in the PANOPTES architecture 
arises from the need to maintain a flat form factor while 
simultaneously being able to produce HR imagery. An expected 
outcome of the fast F/# and the tilted arrangement of the optical 
elements is that the sub-imager’s PSF is large and varies noticeably 
as a function of field location. Fig. 8(a) represents one of 121 
resulted LR images taken for evaluating the PANOPTES system. 
It is obvious from this image that the left side is much blurred than 
the right side and the farther away along the transverse plane an 
object point is from the on-axis location, the larger is its PSF. As 
noted before, it becomes important to identify the sweet spot which 
is the region in the image plane where the retrievable optical 
spatial frequencies exceed the detector Nyquist cutoff. Fig. 8(b) 
depicts the central patch of size  pixels that includes the 
sweet spot. Fig. 8(c) shows the reconstruction results of the MAP 
method for scale factor of 3 (  in equation (1)). No prior 
information about the PSF and registration parameters is used for 
reconstruction. Again, the shift values are estimated by Keren 
method  [9]. Fig. Fig. 8(d) illustrates the reconstruction results for 
the SRUM method which clearly has more contrast than the MAP 
method. 
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     (a)       (b)         (c) 

Fig. 3. Simulation results of different SR methods. (a) The 
ground truth HR image. (b) One of 16 LR images. (c) MAP 
reconstruction result. 
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     (a)       (b)         (c) 

Fig. 4. (a) The image set contains one LR image with ambiguity 
in its forward model. (b) IBP reconstruction result. (c) Robust 
reconstruction result. 

 
     (a)       (b)         (c) 

Fig. 5. SRUM reconstruction results with (a)  (the 
same as IBP),  (b)   and (c) . 

 
             (a)                            (b)                             (c)                            (d) 

Fig. 6. (a) One LR image in a real image set. IBP results with 
(b) ,  (c) ,  and (d) . 

 
Fig. 7. A comparison between the effects of (a) embedding the 
unsharpenning mask into each iteration of IBP method and (b) 
Adding the mask as a postprocessing step. 

 
Fig. 8. (a) One of 121 images taken by a flat camera. (b) The 
region which contains the sweet spot. (c) MAP and (d) SRUM 
results with DSR scale factor of 3. 
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